Clinical exome sequencing reveals an important role for clinical diagnosis of intellectual disability with definition of seven novel variants

${ }^{1}$ Sinem Yalcintepe, ${ }^{2}$ Isik Gorker, ${ }^{2}$ Leyla Bozatli, ${ }^{1}$ Hazal Sezginer Guler, ${ }^{1}$ Drenushe Zhuri, ${ }^{1}$ Selma Demir, ${ }^{1}$ Emine Ikbal Atli, ${ }^{1}$ Engin Atli, ${ }^{1}$ Damla Eker, ${ }^{1}$ Hakan Gurkan
${ }^{1}$ Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne, Turkey; ${ }^{2}$ Trakya University Faculty of Medicine, Department of Child and Adolescent Psychiatry, Edirne, Turkey

Abstract

Intellectual disability can be defined as a significantly below-average general mental function, accompanied by environmental adaptation and behavioural deterioration. Patient files of 87 children with intellectual disability were evaluated in this study. After clinical exclusion criterias, clinical exome sequencing was performed for 25 of 87 intellectual disability cases with a massively parallel targeted sequencing method. Seventeen variants in the genes MBOAT7, KDM5C, TUBB3, MAN1B1, GFAP, CACNA1A, BCOR, LMNA, LBR, ALS2, ENPP1, UBE3A, TRAPPC9, HSPG2, AFF2, NLGN4, and SOX10 were identified in 14 of 25 patients (56%). Seven of the 17 variants (41.1%) were novel in the genes KDM5C, BCOR, UBE3A, TRAPPC9, AFF2, NLGN4, and SOX10. Seven cases (7/25, 28%) had a definite diagnosis of intellectual disability with their pathogenic variants. The high rate of variant detection (56\%) in the current study shows that multiple gene analysis plays an essential role in diagnosing the uncertain etiology of intellectual disability. This study also presents seven novel variants, which are first reported.

Keywords: Intellectual disability, clinical exome sequencing, novel variant

INTRODUCTION

Intellectual disability is a below-average intelligence function that occurs in the developmental period and is found with disorders in adaptive behaviour. The frequency of intellectual disability is $1-3 \% .^{1}$ In diagnostic evaluation, rational use of the laboratory with medical and developmental history, threegeneration pedigree, dysmorphic examination, neurological examination, and neuroimaging are employed. Intellectual disability is difficult to diagnose in most children and requires further studies. A specific diagnosis provides social support and information sharing for the family and the physician. ${ }^{2}$ The diagnostic evaluation should include detailed patient history and physical examination, standard karyotyping, fragile X molecular analysis, neurological imaging, and/or array comparative genomic hybridization (aCGH) studies with subtelomeric fluorescent in situ hybridization (FISH). With the aCGH method, an increase of 10% in diagnostic rate in cases with
intellectual disability has been reported. ${ }^{3}$
The neuropathology of intellectual disability has a broad spectrum. Neurogenesis, neuronal identity, differentiation, morphogenesis, signal transmission pathways, neurochemical regulation, local energy source deficiencies, metabolic pathways, molecular transport, locally occurring metabolic toxins, gliogenesis, glial identity, differentiation, astrocyte relationships, and systemic and local effects make up this broad spectrum. ${ }^{2}$ Intellectual disability may be seen with disorders of some metabolic pathways. The most common deficiencies involve enzymes, transcription regulators, binding proteins, and signal transduction proteins; deficiencies or disorders of these mechanisms are blamed for up to 90% of intellectual disability. ${ }^{4}$ Some of these deficiencies include disorders of oxidoreductase, hydrolase, transferase enzymes, transcription regulatory genes, genes encoding transporter and protein binders, signal transduction, and receptor genes, Rho GTPases, which regulate dendritic

[^0]growth and branching, and Rab GTPases, which control synaptic vesicle transport. ${ }^{5}$ Dendritic movements become prominent in some diseases, such as Angelman syndrome and Fragile X syndrome. Dendrites are formations located on the axonal structure and show continuous development and activation. ${ }^{6}$ Dendritic spurs undergo dynamic changes in both early development and learning, and changes in the morphology of these protrusions can be seen after intense synaptic activity. The morphology and density of these protrusions are abnormal in many types of intellectual disability ${ }^{7}$, they also differ in certain neurological and neuropsychiatric diseases. In Fragile X syndrome and trisomy 13, they appear elongated and sedimentary. In Down syndrome, they are either completely absent or very few and almost invisible. ${ }^{8}$

Fragile X syndrome is the most common cause of intellectual disability after Down syndrome. It has been reported to be seen in $2-4 \%$ of cases of intellectual disability, and it has been observed that the incidence is increased in more severe cases. ${ }^{9}$ Fragile X syndrome is less common (1\%) in those with borderline intelligence. ${ }^{9}$ In various notable studies in the literature, it has been reported that aCGH can determine the etiology in $10-20 \%$ of cases with intellectual disability and pervasive developmental delay. ${ }^{9}$ Although the aetiological classification of intellectual disability has been specified with different percentages in various studies, unknown causes constitute the largest group. ${ }^{10}$

In the current study, a cohort with intellectual disability was evaluated for single-gene etiology using a clinical exome sequencing panel (6699 genes) after excluding chromosomal abnormalities, microdeletion/duplications, and Fragile X syndrome.

METHODS

This study included cases with unexplained intellectual disability after excluding pathologies for structural and numerical chromosomal abnormalities, microdeletion/duplications, and Fragile X Syndrome. The inclusion criterias were: Age from 5 to 18 years, intelligence quotient (IQ) <70, no history of brain trauma, and no history of infection in the perinatal period. Eighty-seven cases were evaluated firstly in the current study. Considering the inclusion criterias, sixty-two cases with chromosomal abnormalities, microdeletion/ duplications, and Fragile X Syndrome were excluded in this study: Thirty-six cases were
diagnosed as Trisomy 21, fourteen cases had a structural chromosomal abnormality, two cases had Fragile X diagnosis, ten cases had a microdeletion/duplication. Twenty-five cases out of eighty-seven were included in our study after all exclusion criterias (Figure 1a,b).

All cases were examined in Child and Adolescent Psychiatry and Medical Genetics Departments from January 2017 to February 2021.

Molecular analysis

After obtaining the written informed consent forms, genomic DNA was extracted from each index patient and his or her parents or other family members from peripheral blood using the EZ1 DNA Investigator Kit (Qiagen, Hilden, Germany) according to the standard procedure.

A clinical exome gene panel including 6699 OMIM genes was analyzed on the Illumina NextSeq550 (Illumina Inc., San Diego, CA, USA) system. Libraries were prepared according to the instructions of the manufacturer's instructions. Quality control of the prepared libraries was done with the Qubit dsDNA BR Assay system (Invitrogen, Carlsbad, CA). Fastq generation was performed on the Illumina NextSeq550 (Illumina Inc., San Diego, CA, ABD) system. Libraries covering the target genes were prepared according to the QIAseq Targeted DNA Panel protocol (Qiagen, Hilden, Germany). Following the target enrichment process, libraries were sequenced on the Illumina NextSeq550 (Illumina Inc., San Diego, CA, ABD) system. QCI analysis (Qiagen, Hilden, Germany) was used for Quality control and ordering Variant Call Format files. Variant analysis was performed with Ingenuity software (Qiagen, Hilden, Germany).

ACMG-2015 (American College of Medical Genetics) ${ }^{11}$ guidelines were followed for the classification of all the variants, and recommendations of the Human Genome Variation Society ${ }^{12}$ were followed to describe the novel variants. In addition, ClinVar ${ }^{13}$, HGMDProfessional 2020 database, and literature information were considered for collecting the information about known variants. Variants were classified as "pathogenic," "likely pathogenic," "uncertain significance," "likely benign," and "benign" according to the ACMG guidelines.

Sanger sequencing was performed for the index patients and parents to validate the segregation of the variants using a 3500 Genetic Analyzer (Applied Biosystems, USA) capillary electrophoresis system.

Figure 1. The exclusion chart of our study showing
a. Methods used in the current study for each exclusion step
b. Case numbers excluded from the study for each crtieria

This study is approved by the Ethical Committee of Trakya University Faculty of Medicine with the number 2021/407 and performed in consonance with the principles of the Declaration of Helsinki.

RESULTS

Twenty-five cases who met the inclusion criteria with intellectual disability were evaluated with clinical exome sequencing in the current study. The mean age of these twenty-five cases was 7.2. Clinical exome sequencing showed fourteen of twenty-five cases (56%) had a clinically related
variant with intellectual disability (Tables 1,2). Seventeen different variants were identified including seven novel variants. Seven cases (7/25, 28%) had a definite diagnosis of intellectual disability with their pathogenic variants (cases $1,2,3,4,5,6$, and 10). The consanguinity marriage rate was not high between the parents, only two of 14 parents were consanguineous. Pedigrees of ten cases were shown in Figures 2 and 3. Four pedigrees could not be able to be included, because parents did not know the exact numbers of their sisters or brothers. The dysmorphic features of our five cases were shown in Figure 4.
Table 1: Pathogenic/likely pathogenic variants detected in the current study and demographic information of the cases

Case/ Gender/ Age	Clinical findings together with ID	Gene	$\begin{aligned} & \text { Coordinate } \\ & \text { (hg19) } \end{aligned}$	Transcript: Nucleotide change, Protein Change	Zygosity/ Segregation	dbSNP	ClinVar Variation Number	HGMD	ACMG Classification	OMIM phenotypes
1/F/5	Epilepsy, speech delay	MBOAT7	chr19: 54684654	NM_024298.5:c.680_690del p.(Leu227ProfsTer65)	Homozygous	rs 1264222654	-	-	$\begin{aligned} & \text { Pathogenic } \\ & \text { (PVS1, PM2, PP3) } \end{aligned}$	Mental retardation, autosomal recessive 57 (AR)
2/M/17	Short stature	KDM5C	chrX: 53246435	$\begin{aligned} & \text { NM_004187.5:c. } 547 \mathrm{~A}>\mathrm{G} \\ & \text { p.(Asn183Asp) } \end{aligned}$	Hemizygous (maternal)	-	-	-	Likely pathogenic (PS4, PM2, PP2, BP4)	Mental retardation, X-linked, syndromic, Claes-Jensen type (XLR)
3/M/16	Dysmorphic features, epilepsy	TUBB3	chr16: 90001472	NM_006086.4:c.613G>A p.(Glu205Lys)	Heterozygous (de novo)	rs878853257	30274	CM107130	Pathogenic (PS3, PM2, PM5, PP2, PP3,PP5)	Cortical dysplasia, complex, with other brain malformations 1 (AD), Fibrosis of extraocular muscles, congenital, 3A (AD)
4/M/6	-	MANIB1	chr9: 139996074	NM_016219.5:c.1204C>T p.(Gln402Ter)	Homozygous	rs865997258	-	-	Pathogenic (PVS1, PM2, PP3)	Rafiq syndrome (AR)
5/F/5	Macrocephaly, developmental delay, synophris	GFAP	chr17: 42987523	NM_001131019.3:c.1276_12 77delACinsGT p.(Thr426Val)	Heterozygous	rs386797323	-	-	Likely pathogenic (PM1, PM2, PP2, PP3)	Alexander disease (AD)
6/M/10	Mild dysmorphic features, epilepsy	CACNAIA	chr19: 13320252	$\begin{aligned} & \text { NM_001127222.2:c. } 6400 \mathrm{C}>\text { T } \\ & \text { p.(Arg2134Cys) } \end{aligned}$	Heterozygous	rs 121908235	68440	CM041265	Likely pathogenic (PM2, PP2, PP3, PP5)	Developmental and epileptic encephalopathy 42 (AD), Episodic ataxia, type $2(\mathrm{AD})$, Migraine, familial hemiplegic, 1 (AD), Migraine, familial hemiplegic, 1 , with progressive cerebellar ataxia (AD), Spinocerebellar ataxia 6 (AD)
7/F/5	Motor retardation, blue sclera	LMNA	chr1: 156106048	$\begin{aligned} & \text { NM_005572.4:c. } 1201 \mathrm{C}>\text { T } \\ & \text { p.(Arg401Cys) } \end{aligned}$	Heterozygous	rs61094188	48035	CM023951	Likely pathogenic (PM1, PM2, PP2, PP3, PP5)	Cardiomyopathy, dilated, 1A (AD), Charcot-Marie-Tooth disease, type 2B1 (AR), Emery-Dreifuss muscular dystrophy 2, autosomal dominant (AD), Emery-Dreifuss muscular dystrophy 3, autosomal recessive (AR), Hearthand syndrome, Slovenian type (AD), Hutchinson-Gilford progeria (AD), Lipodystrophy, familial partial, type 2 (AD), Malouf syndrome (AD), Mandibuloacral dysplasia (AR), Muscular dystrophy, congenital (AD), Restrictive dermopathy, lethal (AR)
8/M/7	Atypic autism, mild dysmorphic features	LBR	chr1: 225592154	$\begin{aligned} & \text { NM_194442.2:c.1639A>G } \\ & \text { p.(Asn547Asp) } \end{aligned}$	Heterozygous (de novo)	rs587777171	100900	CM081321	Pathogenic (PM2, PM5, PP3,PP5)	?Reynolds syndrome (AD), Greenberg skeletal dysplasia (AR), Pelger-Huet anomaly (AD)

9/F/16	Motor retardation, cerebral atrophy	ALS2	chr2: 202626247	$\begin{aligned} & \text { NM_020919.4:c. } 470 \mathrm{G}>\mathrm{A} \\ & \text { p.(Cys157Tyr) } \end{aligned}$	Heterozygous	rs121908138	4415	CM061636	Likely pathogenic (PM2, PP2, PP3, PP5)	Amyotrophic lateral sclerosis 2 , juvenile (AR), Primary lateral sclerosis, juvenile (AR), Spastic paralysis, infantile onset ascending (AR)
		ENPP1	chr6: 132206103	$\begin{aligned} & \text { NM_006208.3:c. } 2344 \mathrm{C}>\mathrm{T} \\ & \text { p.(Arg782Ter) } \end{aligned}$	Heterozygous	-	-	CM062607	Pathogenic (PVS1, PM2, PP3)	\{Diabetes mellitus, non-insulindependent, susceptibility to\} (AD), \{Obesity, susceptibility to\} (AD, AR), Arterial calcification, generalized, of infancy, 1 (AR), Cole disease (AD), Hypophosphatemic rickets, autosomal recessive, 2 (AR)
10/M/5	-	UBE3A	chr15: 25616056	NM_000462.5:c.1274dupT p.(Asp426GlyfsTer6)	Heterozygous	-	-	-	Pathogenic (PVS1, PM2, PP3)	Angelman syndrome (AD)
14/M/15	Hearing loss, dystophia cantorum, motor retardation	SOX10	chr22: 38374075	$\begin{aligned} & \text { NM_006941.4:c. } 496 \mathrm{~A}>\mathrm{G} \\ & \text { p.(Lys166Glu) } \end{aligned}$	Heterozygous	-	-	-	Likely pathogenic (PM1, PM2, PP2, PP3)	PCWH syndrome (AD), Waardenburg syndrome, type 2E, with or without neurologic involvement (AD), Waardenburg syndrome, type 4C (AD)

Table 2: Variants of unknown clinical significance detected in the current study and demographic information of the cases

Case/ Gender/ Age	Clinical findings together with ID	Gene	Coordinate (hg19)	Transcript: Nucleotide change, Protein Change	Zygosity/ Segregation	dbSNP	ClinVar Variation Number	HGMD	ACMG Classification	OMIM phenotypes
7/F/5	Motor retardation, blue sclera	BCOR	$\begin{aligned} & \text { chrX: } \\ & 39914668 \end{aligned}$	NM_001123385.2:c.4694C>T p.(Thr1565Ile)	Heterozygou	-	-	-	VUS (PM2,PP2,PP3)	Microphthalmia, syndromic 2 (XLD)
10/M/5	-	TRAPPC9	chr8: 140743401	NM_031466.8:c.3350A>C p.(His1117Pro)	Heterozygous	-	-	-	VUS (PM2,PP2, BP4)	Mental retardation, autosomal recessive 13 (AR)
11/M/5	Motor retardation	HSPG2	$\begin{aligned} & \text { chr1: } \\ & 22159838 \end{aligned}$	NM_005529.7:c.11018T>C p.(Phe3673Ser)	Homozygous	rs 147707402	587472	-	VUS (PM2,PP2,PP3)	Dyssegmental dysplasia, SilvermanHandmaker type (AR), SchwartzJampel syndrome, type 1 (AR)
12/M/10	-	AFF2	$\begin{aligned} & \text { chrX: } \\ & 148049184 \end{aligned}$	$\begin{aligned} & \text { NM_002025.4:c. } 3229 \mathrm{C}>\mathrm{A} \\ & \text { p.(Gln 1077Lys) } \end{aligned}$	Hemizygous (Maternal)	-	-	-	VUS (PM2,PP2,PP3)	Mental retardation, X-linked, FRAXE type (XLR)
13/M/7	Growth retardation Speech delay	NLGN4	$\begin{aligned} & \text { chrX: } \\ & 5821410 \end{aligned}$	$\begin{aligned} & \text { NM_020742.3:c.1309C>T } \\ & \text { p.(Arg437Trp) } \end{aligned}$	Hemizygous (Maternal)	-	-	-	VUS (PM2, PP2, PP3)	\{Asperger syndrome susceptibility, X-linked 2\} (XL), \{Autism susceptibility, X-linked 2\} (IC, Mu, XL), Mental retardation, X-linked (IC, Mu, XL)

ID: Intellectual disability, dbSNP: The Single Nucleotide Polymorphism Database, HGMD: The Human Gene Mutation Database, ACMG: American College of Medical Genetics, OMIM: Online Mendelian Inheritance in Man, F: Female, M: Male, chr: Chromosome, AR: Autosomal recessive, XLR: X Linked recessive, AD: Autosomal dominant, XLD: X Linked dominant

Figure 2. The pedigrees of the cases $1,3,4,5$, and 6 in the current study

Case 8

Figure 3. The pedigrees of the cases $7,8,9,13$, and 14 in the current study

Figure 4. The clinical dysmorphic features of
a. Case 1 with broad forehead, mild synophris, depressed nasal root, smooth philtrum, thin upper lip
b. Case 3 with long face, mild narrow temporal region, big ears, retrognathia
c. Case 6 with low hairline, depressed nasal root, smooth philtrum, thin upper lip, crowded teeth
d. Case 8 with broad forehead, downslanting palpebral fissures, open mouth, low set ears
e. Case 14 with mild hypertelorism, broad nose tip, thin upper lip, short neck

X linked variants

NM_004187.5:c.547A>G p.(Asn183Asp) hemizygous likely pathogenic novel variant in the KDM5C gene was detected in case 2, his 11 years old brother had both intellectual disability and short stature, and the same hemizygous variant. Segregation analysis showed that the asymptomatic mother was heterozygous.

NM_001123385.2:c.4694C>T p.(Thr1565Ile) heterozygous novel variant in the $B C O R$ gene was classified as VUS in case 7, who has motor retardation and blue sclera. Parents were nonconsanguineous.

NM_002025.4:c.3229C>A p.(Gln1077Lys) hemizygous novel variant in the $A F F 2$ gene was detected in case 12 and his brother. His sister and mother were heterozygous for the same variant. However, this variant was classified as VUS. It is related to the patient's clinical findings defining the intellectual disability.

NM_020742.3:c.1309C>T p.(Arg437Trp) in the $\bar{N} L G N 4$ gene was a maternally inherited hemizygous novel VUS variant detected in case 13 who has a speech delay, growth retardation, and absence of seizures. His mouth was open with tongue out, and he had flat feet.

Dominantly inherited variants

NM_006086.4:c.613G>A p.(Glu205Lys) heterozygous de novo pathogenic variant in the TUBB3 gene was in case 3 with microcephaly, short philtrum, micrognathia, arachnodactyly, pectus excavatum, broad toe, and epilepsy.

NM_001131019.3:c.1276_1277delACinsGT p.(Thr426Val) heterozygous pathogenic variant in the GFAP gene was detected in case 5 with intellectual disability, macrocephaly, developmental delay, and synophris.

NM_001127222.2:c.6400C>T p.(Arg2134Cys) heterozygous likely pathogenic variant in the CACNAIA gene was detected in case 6 with mild dysmorphic features (long philtrum, micrognathia, and macroglossia) and epilepsy.

NM_005572.4:c.1201C>T p. (Arg401Cys) heterozygous likely pathogenic variant in the LMNA gene in case 7 who has motor retardation and blue sclera.

NM_194442.2:c.1639A>G p.(Asn547Asp) heterozygous de novo pathogenic variant in the $L B R$ gene was detected in case 8 , who also shows atypic autism, long philtrum, and dysplastic ears.

NM_006208.3:c.2344C>T p.(Arg782Ter) heterozygous pathogenic variant in the ENPP1
gene was detected in case 9 who has motor retardation together with cerebral atrophy with intellectual disability.

NM_000462.5:c.1274dupT p.(Asp426GlyfsTer6) heterozygous novel pathogenic variant in the UBE3A gene was detected in case 10 .

NM_006941.4:c.496A>G p.(Lys166Glu) heterozygous novel likely pathogenic variant in the SOX10 gene was detected in case 14 with motor retardation, hearing loss, dystopia cantorum, and strabismus.

Recessively inherited variants

N M_ 024298.5 : c. 680 _ 690 del p .(Leu227ProfsTer65) homozygous pathogenic variant in the MBOAT7 gene was detected in case 1 , who has epilepsy and speech delay. There was no consanguinity between the parents.

NM_016219.5:c.1204C>T p.(Gln402Ter) homozygous pathogenic variant in the MAN1B1 gene was detected in case 4 , whose parents had first-degree cousin marriage.

NM_020919.4:c. $470 \mathrm{G}>\mathrm{A}$ p. (Cys157Tyr) heterozygous likely pathogenic variant in the ALS2 gene was detected in case 9, who has motor retardation and cerebral atrophy.

NM_031466.8:c.3350A>C p.(His1117Pro) heterozygous novel VUS in the TRAPPC9 gene was detected in case 10 , who was diagnosed as Angelman Syndrome with the $U B E 3 A$ pathogenic variant.

NM_005529.7:c.11018T>C p.(Phe3673Ser) homozygous VUS in the HSPG2 gene was detected in case 11, who has motor retardation and intellectual disability.

DISCUSSION

The genetic approach of a case with an intellectual disability needs pre-, peri-, and postnatal clinical history; determination of risk factors, noting the pedigree of at least three generations and the parents' socioeconomic status; determination of minor anomalies; and physical measurements, neurological examination, and complete physical examination. The relationship between intellectual disability and congenital malformations is well defined, and detailed dysmorphic examination has a fundamental importance in determining
the etiology of intellectual disability. In many studies investigating the causes of intellectual disability, dysmorphic examination and syndrome identification by an experienced clinician is the primary diagnostic method. The clinical history and dysmorphic examination provide the clinician with information about which tests are necessary. In the first examination, genetic testing for intellectual disability etiology includes chromosome analysis, microdeletion/duplication analysis (aCGH method), and Fragile X mutation analysis. The incidence of chromosomal anomalies in cases with intellectual disability varies between 3% and 34%, and it is seen to be around 15% in studies conducted in various centers. ${ }^{14}$ After these routine tests, a detailed molecular analysis should be planned for intellectual disability cases. Proof of diagnosis by molecular genetic testing is essential for atypical cases that suggest a diagnosis but do not have typical findings. Atypical presentations of known clinical syndromes are increasing; therefore, molecular studies come to the fore and are useful in clarifying events.

Clinical exome sequencing, which includes 6699 genes, showed 17 intellectual disabilityrelated variants in 14 of 25 (56%) cases in the current study. This is the first report presenting seven novel variants in the KDM5C, BCOR, UBE3A, TRAPPC9, AFF2, NLGN4, and SOX10 genes. Four novel variants and 12 pathogenic/ likely pathogenic variants were reported in a study presenting whole-genome sequencing results of 45 intellectual disability cases. ${ }^{15}$ Another study analyzing 454 genes in 112 intellectual disability/developmental delay cases reported that 14 variants, 13 of these 14 variants, were novel. ${ }^{16}$ A similar study from Turkey reported a molecular diagnosis in 29 patients out of 59 with non-syndromic intellectual disability. ${ }^{17}$ With a causative variant detection rate of 56% and with seven novel variants, our study presents valuable data for the literature.

Seven novel variants of 14 (50\%) were found in the KDM5C, BCOR, UBE3A, TRAPPC9, AFF2, NLGN4, and SOX10 genes in seven different cases in the current study. The high rate of novel variants determined is remarkable. A study reported a case with a novel KDM5C variant (c.3874_3875del) with intellectual disability and severe short stature. ${ }^{18}$ A study presenting 19 females carrying 10 novel heterozygous variants, including five probands with de novo variants, reported that all affected individuals presented with learning disabilities or intellectual disability; four also had a language impairment mainly affecting expression,
and four heterozygous females were asymptomatic which is similar to case 2 in the current study. ${ }^{19}$ A novel variant of uncertain significance (VUS) was detected in case 7 in the $B C O R$ gene in our study. Novel pathogenic variants were reported in the $B C O R$ gene with congenital cataract ${ }^{20}$ and acute myeloid leukemia. ${ }^{21} B C O R$ gene pathogenic variants are related to syndromic microphthalmia and craniosynostosis. ${ }^{22}$ Case 7 had an $L M N A$ pathogenic variant with the $B C O R$ VUS in the current study. UBE3A pathogenic and TRAPPC9 novel VUS were detected in case 10 in our study. A novel $U B E 3 A$ sequence variant was previously identified in eight related individuals with neurodevelopmental delay, but the phenotypes did not match the clinical criteria for Angelman syndrome in the literature. ${ }^{23}$ It is also reported that functional analysis of the reported variant revealed no significant deficits in the UBE3A protein. ${ }^{23}$ In our study, case 10 had only intellectual disability. The TRAPPC9 gene is related to autosomal recessive mental retardation (OMIM \#613192), and case 10 had a heterozygous TRAPPC9 variant, but a functional study could determine the effect for case 10 . An $A F F 2$ novel variant was detected in case 12 , a male case inherited maternally, in the current study. It was reported that a heterozygous deletion at Xq27.3q28 including FMR1, AFF2, and IDS causing intellectual disability and characteristic facial features is infrequent in females, with only 10 patients having been reported. ${ }^{24}$ Case 12, in the current study, had a VUS in the AFF2 gene inherited maternally and due to this gene had been related to intellectual disability. The NLGN4 novel variant was detected in case 13, in which intellectual disability, growth retardation, and speech delay were seen. NLGN4 has been reported as a possible implication in autism ${ }^{25}$ and has been reported to be mutated in many patients with autism and other neurodevelopmental disorders. ${ }^{26}$ With molecular analysis results, case 13 was referred to the child psychiatry department to be evaluated for autism. Case 14, who had intellectual disability, hearing loss, dystopia canthorum, and motor retardation, was diagnosed with Waardenburg syndrome with a novel likely pathogenic SOX10 gene variant. Novel variants on the SOX10 gene were reported with clinical heterogeneity ${ }^{27}$ however, clinical findings may not be typical.

Ten previously reported variants were also detected in our study. An MBOAT7 homozygous pathogenic frameshift variant was detected in case 1, with intellectual disability, epilepsy,
and speech delay. An MBOAT7 frameshift variant ${ }^{28}$ in-frame deletion variants ${ }^{29}$, and loss of function variants ${ }^{30}$ have been reported with intellectual disability, seizures, and autistic features previously. Case 3 in the current study had a TUBB3 pathogenic variant with intellectual disability, epilepsy, and dysmorphic features. $T U B B 3$ is related to the malformation of cortical development ${ }^{31,32}$, neuronal migration disorders ${ }^{33}$, and infantile nystagmus. ${ }^{34}$ In our study, case 3 had dysmorphic features (microcephaly, short philtrum, micrognathia, arachnodactyly, pectus excavatum, and broad toe) different from those described in the literature. A MAN1B1 homozygous pathogenic variant was detected in case 4, with isolated intellectual disability. The MAN1B1 gene is related to congenital disorders of glycosylation, which present with intellectual disability and are thought to be caused by deficient glycosylation of proteins and lipids. ${ }^{35,36}$ Case 4 showed a nonsense mutation, (NM_016219.5:c.1204C>T p.[Gln402Ter]), in the current study; while a case had a homozygous nonsense mutation, (NM_016219.3: c.1418G>A [p.Trp473*]), segregated with intellectual disability and additional dysmorphic features in a study. ${ }^{37}$ Case 5, who had an intellectual disability, developmental delay, and macrocephaly, was diagnosed with Alexander's disease with a GFAP gene mutation. A study evaluating 135 patients diagnosed with Alexander's disease reported that the frequent findings were seizure, macrocephaly, developmental delay, and spasticity. ${ }^{38} \mathrm{~A}$ CACNA1A pathogenic variant was detected in case 6 , who had an intellectual disability, epilepsy, and dysmorphic features. A study investigating the etiology of undiagnosed neurodevelopmental disorders reported that CACNA1A is a promising gene for neurodevelopmental disorders or epileptic encephalopathy. ${ }^{39}$ An $L M N A$ variant was detected in case 7, with intellectual disability, motor retardation, and blue sclera in our study. A homozygous LMNA variant was reported in a family with lipodystrophy. ${ }^{40}$ A de novo 1q22q23.1 interstitial microdeletion including the LMNA gene was reported in a case with short stature, microcephaly, hypoplastic corpus callosum, cleft palate, minor facial anomalies, congenital heart defect, camptodactyly of the fourth to fifth fingers, and intellectual disability. ${ }^{41}$ An $L B R$ gene de novo pathogenic variant was detected in case 8 , who had an intellectual disability, atypical autism, and mild dysmorphic features in the current study. $L B R$ is associated with Pelger-Huet anomaly, Greenberg dysplasia, and Reynolds syndrome. ${ }^{42}$

To our knowledge, no study has been reported on the relationship between the $L B R$ gene and autism. Skeletal dysplasia and dysmorphic features have been reported with the $L B R$ gene in two cases reporting a different phenotypic spectrum of LBR-associated disorders. ${ }^{43}$ ALS2 and ENPP1 heterozygous variants were detected in case 9, with intellectual disability, motor retardation, and cerebral atrophy. The $A L S 2$ gene is recessively inherited, and both $A L S 2$ and ENPP1 gene phenotypes were not related to the phenotype of case 9. ALS2 gene mutations have been reported for juvenile-onset amyotrophic lateral sclerosis and related motor neuron diseases. ${ }^{44}$ Due to case 9 being sixteen years old and having cerebral atrophy, $A L S 2$ may be reported as a candidate gene for cerebral atrophy. An HSPG2 homozygous VUS was detected in case 11 , with intellectual disability and motor retardation in the current study. A case with profound intellectual disability, infantileonset seizures, chronic respiratory failure, facial dysmorphisms, skeletal abnormalities, and an atrial septal defect was reported with maternally inherited uniparental disomy of chromosome 16 including the WWOX gene explains the seizures and intellectual disability. ${ }^{45}$ Another pathogenic variant in the HSPG2 gene was reported as being responsible or the patient's skeletal abnormalities including 1 p36 deletion causing developmental delay, intellectual disability, and seizures, which includes the HSPG2 gene in the region responsible for skeletal dysplasia and congenital heart defects. ${ }^{46}$

The etiology of intellectual disability is heterogeneous and variable. With the development of new diagnostic methods, our knowledge of this subject increases day by day. In a significant proportion of intellectual disability cases, the etiology is unknown. We aimed to focus on these idiopathic intellectual disability cases in this study and to highlight that multiple gene analysis is beneficial to determine the etiology of intellectual disability.

In conclusion, in the current study, 14 cases of $25(56 \%)$ were defined with a variant related to intellectual disability. Seven of fourteen (50%) cases had a definite diagnosis of intellectual disability with the pathogenic variants in MBOAT7, KDM5C, TUBB3, MAN1B1, GFAP, CACNAIA, and UBE3A genes. Seven novel variants were determined in the KDM5C, BCOR, UBE3A, TRAPPC9, AFF2, NLGN4, and SOX10 genes. With a 56% variant detection rate, our study showed that multiple gene analysis for intellectual disability is crucial.

The limitations of this study are: the segregation analysis of all participants could not be applied due to the study was retrospectively planned. The functional studies were not performed on novel variants, they are classified according to the bioinformatical tools.

ACKNOWLEDGEMENTS

The authors would like to thank all the patients and family members who participated in this study.

DISCLOSURE

Data availability: The data supporting this study's findings are available from the corresponding author upon reasonable request.

Financial support: None.
Conflict of interest: None

REFERENCES

1. Lee K, Cascella M, Marwaha R. Intellectual disability. StatPearls 2022; Treasure Island (FL). Napoli, Italy: Bookshelf ID: NBK547654.
2. AlMutiri R, Malta M, Shevell MI, Srour M. Evaluation of individuals with non-syndromic global developmental delay and intellectual disability. Children (Basel) 2023; 10(3):414. doi:10.3390/ children10030414.
3. Ko MH, Chen HJ. Genome-wide sequencing modalities for children with unexplained global developmental delay and intellectual disabilities-A narrative review. Children (Basel) 2023; 10(3):501. doi: $10.3390 /$ children 10030501 .
4. Ford TJL, Jeon BT, Lee H, Kim WY. Dendritic spine and synapse pathology in chromatin modifierassociated autism spectrum disorders and intellectual disability. Front Mol Neurosci 2023; 15:1048713. doi: 10.3389/fnmol.2022.1048713.
5. Fell CW, Nagy V. Cellular models and highthroughput screening for genetic causality of intellectual disability. Trends Mol Med 2021; 27:22030. doi: 10.1016/j.molmed.2020.12.003.
6. Batool S, Raza H, Zaidi J, Riaz S, Hasan S, Syed NI. Synapse formation: from cellular and molecular mechanisms to neurodevelopmental and neurodegenerative disorders. J Neurophysiol 2019; 121(4):1381-97. doi: 10.1152/jn.00833.2018.
7. Dobrigna M, Poëa-Guyon S, Rousseau V, Vincent A, Toutain A, Barnier JV. The molecular basis of p21-activated kinase-associated neurodevelopmental disorders: From genotype to phenotype. Front Neurosci 2023; 17:1123784. doi: 10.3389/ fnins.2023.1123784.
8. Ishihara K. Genes associated with disturbed cerebral neurogenesis in the embryonic brain of mouse models of Down syndrome. Genes (Basel) 2021; 12(10):1598. doi: 10.3390/genes 12101598 .
9. Strnadova I, Nevin SM, Scully JL, Palmer EE. The opinions and experiences of people with intellectual disability regarding genetic testing and genetic medicine: A systematic review. Genet Med 2022;24(3):535-48. doi: 10.1016/j.gim.2021.11.013.
10. Rustom H, Hassan Eltorki Y, Adil Shah Khoodoruth M, et al. Genetic etiology of adult intellectual disability (ID) of unknown cause in Qatar: a retrospective study. Qatar Med J 2022; 2022(1):26. doi: $10.5339 / q m j .2022 .26$.
11. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405-24. doi: 10.1038/gim.2015.30.
12. Den Dunnen JT, Dalgleish R, Maglott DR, et al. HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat 2016; 37: 564-9. doi: 10.1002/humu. 22981.
13. Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 2018; 46: D1062-D1067. doi: 10.1093/nar/gkx1153.
14. Maia N, Nabais Sa MJ, Melo-Pires M, De Brouwer APM, Jorge P. Intellectual disability genomics: current state, pitfalls and future challenges. $B M C$ Genomics 2021; 22:909. doi: 10.1186/s12864-021-08227-4.
15. Abe-Hatano C, Iida A, Kosugi S, et al. Whole genome sequencing of 45 Japanese patients with intellectual disability. Am J Med Genet A 2021; 185:1468-80. doi: 10.1002/ajmg.a. 62138.
16. Yan H, Shi Z, Wu Y, et al. Targeted next generation sequencing in 112 Chinese patients with intellectual disability/developmental delay: novel mutations and candidate gene. BMC Med Genet 2019; 20:80. doi: 10.1186/s12881-019-0794-y.
17. Taskiran EZ, Karaosmanoglu B, Kosukcu C, et al. Diagnostic yield of whole-exome sequencing in nonsyndromic intellectual disability. J Intellect Disabil Res 2021; 65:577-88. doi: 10.1111/jir. 12835.
18. Kawano-Matsuda F, Maeda T, Kaname T, Yanagi K, Ihara K. X-linked mental retardation and severe short stature with a novel mutation of the KDM5C gene. Clin Pediatr Endocrinol 2021; 30:61-4. doi: 10.1297/cpe.30.61.
19. Carmignac V, Nambot S, Lehalle D, et al. Further delineation of the female phenotype with KDM5C disease-causing variants: 19 new individuals and review of the literature. Clin Genet 2020; 98:43-55. doi: 10.1111/cge. 13755.
20. Rechsteiner D, Issler L, Koller S, et al. Genetic analysis in a Swiss cohort of bilateral congenital cataract. JAMA Ophthalmol 2021; 139:691-700. doi: 10.1001/jamaophthalmol.2021.0385.
21. Eckardt JN, Stasik S, Kramer M, et al. Loss-offunction mutations of BCOR are an independent marker of adverse outcomes in intensively treated patients with acute myeloid leukemia. Cancers (Basel) 2021; 13(9):2095. doi: 10.3390/cancers13092095.
22. Cinnirella G, Taylor RL, Coco C, et al. Craniosynostosis-microphthalmia syndrome belongs
to the spectrum of BCOR-related disorders. Clin Genet 2020; 98:413-5. doi: 10.1111/cge.13808.
23. Geerts-Haages A, Bossuyt SNV, Den Besten I, et al. A novel UBE3A sequence variant identified in eight related individuals with neurodevelopmental delay, results in a phenotype which does not match the clinical criteria of Angelman syndrome. Mol Genet Genomic Med 2020; 8: e1481. doi: 10.1002/ mgg3.1481.
24. Katoh K, Aiba K, Fukushi D, et al. Clinical and molecular genetic characterization of two female patients harboring the Xq 27.3 q 28 deletion with different ratios of X chromosome inactivation. Hum Mutat 2020; 41: 1447-60. doi: 10.1002/humu.24058.
25. Talebizadeh Z, Lam DY, Theodoro MF, Bittel DC, Lushington GH, Butler MG. Novel splice isoforms for NLGN3 and NLGN4 with possible implications in autism. J Med Genet 2006; 43:e21. doi: 10.1136/ jmg. 2005.036897 .
26. Cast TP, Boesch DJ, Smyth K, Shaw AE, Ghebrial M, Chanda S. An autism associated mutation impairs neuroligin-4 glycosylation and enhances excitatory synaptic transmission in human neurons. J Neurosci 2021; 41:392-407. doi: 10.1523/ JNEUROSCI.0404-20.2020.
27. Moldenaes MF, Rendtorff ND, Hindbaek LS, Torring PM, Nilssen O, Tranebjaerg L. Clinical manifestations and novel pathogenic variants in SOX10 in eight Danish probands with Waardenburg syndrome. Eur J Med Genet 2021; 64:104265. doi: 10.1016/j.ejmg.2021.104265.
28. Khan S, Rawlins LE, Harlalka GV, et al. Homozygous variants in the HEXB and MBOAT7 genes underlie neurological diseases in consanguineous families. BMC Med Genet 2019; 20:199. doi: 10.1186/s12881-019-0907-7.
29. Sun L, Khan A, Zhang H, et al. Phenotypic characterization of intellectual disability caused by MBOAT7 mutation in two consanguineous Pakistani families. Front Pediatr 2020; 8:585053. doi: 10.3389/ fped.2020.585053.
30. Heidari E, Caddeo A, Zarabadi K, et al. Identification of novel loss of function variants in MBOAT7 resulting in intellectual disability. Genomics 2020; 112:4072-7. doi 10.1016/j.ygeno.2020.07.008.
31. Accogli A, Severino M, Riva A, et al. Targeted resequencing in malformations of cortical development: genotype-phenotype correlations. Seizure 2020; 80:145-52. doi: 10.1016/j.seizure.2020.05.023.
32. Lee $\mathrm{S}, \mathrm{Kim} \mathrm{SH}, \mathrm{Kim} \mathrm{B}$, et al. Clinical implementation of targeted gene sequencing for malformation of cortical development. Pediatr Neurol 2020; 103:2734. doi: 10.1016/j.pediatrneurol.2019.07.010.
33. Liu JS. Molecular genetics of neuronal migration disorders. Curr Neurol Neurosci Rep 2011; 11:171-8. doi: 10.1007/s11910-010-0176-5.
34. Jin S, Park SE, Won D, Lee ST, Han SH, Han J. TUBB3 M323V syndrome presents with infantile nystagmus. Genes (Basel) 2021; 12(4):575. doi: 10.3390/genes12040575.
35. Sakhi S, Cholet S, Wehbi S, et al. MAN1B1-CDG: Three new individuals and associated biochemical profiles. Mol Genet Metab Rep 2021; 28:100775. doi: 10.1016/j.ymgmr.2021.100775.
36. Van Scherpenzeel M, Timal S, Rymen D, et al. Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency. Brain 2014; 137:1030-8. doi: 10.1093/ brain/awu019.
37. Rafiq MA, Kuss AW, Puettmann L, et al. Mutations in the alpha 1,2-mannosidase gene, MAN1B1, cause autosomal-recessive intellectual disability. Am J Hит Genet 2011; 89:176-82. doi: 10.1016/j. ajhg.2011.06.006.
38. Heshmatzad K, Haghi Panah M, Tavasoli AR, Ashrafi MR, Mahdieh N, Rabbani B. GFAP variants leading to infantile Alexander disease: Phenotype and genotype analysis of 135 cases and report of a de novo variant. Clin Neurol Neurosurg 2021; 207:106754. doi: 10.1016/j.clineuro.2021.106754.
39. Yamamoto T, Imaizumi T, Yamamoto-Shimojima K, et al. Genomic backgrounds of Japanese patients with undiagnosed neurodevelopmental disorders. Brain Dev 2019; 41:776-82. doi: 10.1016/j. braindev.2019.05.007.
40. Patni N, Hatab S, Xing C, Zhou Z, Quittner C, Garg A. A novel autosomal recessive lipodystrophy syndrome due to homozygous LMNA variant. J Med Genet 2020; 57:422-6. doi: 10.1136/ jmedgenet-2019-106395.
41. Aleksiuniene B, Preiksaitiene E, Morkuniene A, Ambrozaityte L, Utkus A. A de novo 1q22q23.1 interstitial microdeletion in a girl with intellectual disability and multiple congenital anomalies including congenital heart defect. Cytogenet Genome Res 2018; 154:6-11. doi: 10.1159/000486947.
42. Giorgio E, Sirchia F, Bosco M, et al. A novel case of Greenberg dysplasia and genotype-phenotype correlation analysis for LBR pathogenic variants: An instructive example of one gene-multiple phenotypes. Am J Med Genet A 2019; 179:306-11. doi: 10.1002/ ajmg.a.61000.
43. Thompson E, Abdalla E, Superti-Furga A, et al. Lamin B receptor-related disorder is associated with a spectrum of skeletal dysplasia phenotypes. Bone 2019; 120:354-63. doi: 10.1016/j.bone.2018.11.006.
44. Kim J, Kim S, Nahm M, et al. ALS2 regulates endosomal trafficking, postsynaptic development, and neuronal survival. J Cell Biol 2021; 220(5): e202007112. doi: 10.1083/jcb. 202007112.
45. Davids M, Markello T, Wolfe LA, et al. Early infantile-onset epileptic encephalopathy 28 due to a homozygous microdeletion involving the WWOX gene in a region of uniparental disomy. Hum Mutat 2019; 40:42-7. doi: 10.1002/humu. 23675.
46. Jordan VK, Zaveri HP, Scott DA. 1p36 deletion syndrome: an update. Appl Clin Genet 2015; 8:189200. doi: 10.2147/TACG.S65698.
Supplementary
The genes included in the clinical exome sequencing panel in our study

[^0]: Address correspondence to:Sinem Yalcintepe MD, Trakya University Faculty of Medicine, Department of Medical Genetics, Edirne-Turkey. Tel: 00905377168691 e-mail: sinemyalcintepe @ gmail.com

 Date of Submission: 16 February, 2023; Date of Acceptance: 20 November 2023
 https://doi.org/10.54029/2023rfz

