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Correlation of MRI brain findings with executive 
dysfunction and vascular risk factors in elderly 
patients with cognitive impairment
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Abstract 

Objectives: The primary objective of the present study was to investigate the relationship between 
gray matter changes, white matter changes and executive function among older Indian adults with 
vascular risk factors. Methods: This hospital based observational analytical study was conducted in 
a tertiary care health facility located in the north-western region of India for a duration of one year 
between October 2021 and September 2022 among patients between 60 and 90 years of age presenting 
to the outpatient sections of Department of Neurology with executive dysfunction. We assessed the 
vascular risk factors, evaluated executive function, and then the patients underwent brain MRI on 
a 1.5T MRI scanner. Results: The proportion of patients with dorsolateral atrophy was significantly 
higher (p<0.001) among patients with executive dysfunction (83.10%). Hypertension significantly 
contributed to predict the atrophy of temporal lobe and parietal lobe (p<0.05).  Hyperintensity of 
periventricular area was found significantly higher among executive dysfunction patients (85.92%). 
Elevated HbA1c levels and smoking significantly contributed to predict the white matter hyperintensity 
of basal ganglia (p<0.05). The present study also found that hypertension and alcohol use significantly 
predicted white matter hyperintensity in the frontal area (p<0.05). 
Conclusion: Specific white matter hyperintensity loci and grey matter volume loss were closely 
associated with executive dysfunction in elderly. It is understood that modifying and treating vascular 
risk factors can prevent progression of executive dysfunction and these findings emphasize the complex 
nature of the relationship between vascular risk factors, cognitive impairment, and brain structure.
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INTRODUCTION

Executive function is a complex cognitive 
function that enables a person to generate 
thoughts, formulate plans, establish a goal, and 
guide behaviour, inhibiting what is irrelevant 
and unnecessary, and shifting cognitive sets as 
what and when needed. The major components 
of executive function are planning, initiation 
and monitoring of action, inhibitory control, 
mental flexibility, working memory, and 
fluency. Executive processes are mediated by 
networks incorporating multiple cortical regions 
including parietal, occipital lobes as well as 
prefrontal region, basal ganglia, thalamus, and 
cerebellum.1,2 Executive dysfunctions can be 
found in neurodegenerative diseases, including 
frontotemporal dementia, Alzheimer’s disease, 
vascular cognitive impairment, Parkinson 

disease dementia, neoplastic etiology, infectious, 
demyelinating disease, leukodystrophy, radiation 
and metabolic etiology, hydrocephalus, psychiatric 
conditions.
	 Age-related changes in the frontal lobe is 
associated with poorer executive function (e.g., 
working memory, switching/set-shifting, and 
inhibitory control).3 It is recognized that ischemic 
brain lesions are a significant contributor to 
cognitive impairment and that many cases of 
dementia are mixed, with a cerebrovascular 
component.4 White matter lesions (WML) are 
divided into subcortical and periventricular 
white matter. Subcortical white matter lesions are 
believed to primarily disrupt short connections, 
and thus impairing cognitive performance 
supported by the specific brain region. For 
example, dexterous hand and arm movements are 
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generally thought to be primarily mediated by the 
motor cortex. Therefore, subcortical WMLs in this 
specific region can result in reduced performance 
in hand and arm dextrous movements. In contrast, 
periventricular white matter lesions disrupt longer 
connections to spatially distant cortical areas, and 
thus can cause cognitive performance decline in 
multiple domains. Ischemic white matter lesions, 
seen on MRI as white matter hyperintensity 
(WMH), have previously been associated with 
decreased performance on neuropsychological 
testing5,6, and risk of mild cognitive impairment7 
and dementia.8

	 Gray matter volume loss can be associated 
with cognitive decline including executive 
dysfunctions. Previous studies in healthy adults 
suggested that executive performance is related 
to prefrontal volume.9-11 However, given that 
executive functions and higher-order cognition 
in general are dependent on multiple cortical and 
subcortical networks, it is highly likely that the 
structural components underlying such functions 
are not limited to the prefrontal cortex but also 
include connections with other cortical areas.12 It 
is therefore important to consider how the entire 
brain structurally supports executive functions. 
Against this background , the primary objective of 
the present study was to investigate the correlation 
of MRI brain findings with executive dysfunction 
(ED) and vascular risk factors in elderly patients 
with cognitive impairment.

METHODS

This hospital based observational analytical study 
was conducted in a tertiary care health facility 
located in the north-western region of India for 
a duration of one year between October 2021 
and September 2022. the institution has specialty 
clinics for patients with cognitive impairment 
which is functioning once a week. The study 
was approved by the Institute Human Ethics 
Committee (IHEC). All patients between 60 
and 90 years of age presenting to the outpatient 
sections of Department of Neurology with 
executive dysfunction (irrespective of type of 
neurodegenerative disorders) with positive risk 
factors including diabetes mellitus, hypertension, 
smoking, alcohol, hyperlipidaemia, chronic 
kidney injury were included in study.  In cases of 
cognitive impairments of patients with affection of 
multiple domains, we had included patients who 
had predominant executive dysfunction which 
was main contributory to functional dependence. 
However, we excluded patients less than 60 
years of age, those presenting with acute illness 

(within 12 weeks) including stroke, metabolic 
encephalopathy, acute meningoencephalitis, septic 
encephalopathy, altered sensorium, patients with 
psychiatric disorders, patients with intracranial 
space occupying lesions and/or planned for 
operative intervention (Figure 1).
	 Patients providing written informed consent 
underwent detailed general physical examination 
including vital signs, neurological, and psychiatric 
examination, battery of laboratory tests (including 
total cholesterol, low-density lipoprotein (LDL) 
cholesterol, blood glucose, haemoglobin A1c, 
blood urea nitrogen (BUN), serum creatinine), 
and MRI Brain. We used a predesigned, semi-
structured, pretested questionnaire to capture the 
cerebrovascular risk factors.
	 We employed several cognitive tests to evaluate 
executive function in the elderly population. These 
tests specifically assessed different aspects of 
executive function, including mental flexibility, 
response inhibition, fluency, sequencing ability, 
working memory. Trail-B Test (measures mental 
flexibility and cognitive switching ability), Go-
No-Go Test (to evaluate an individual’s ability 
to inhibit automatic responses), Lexical Fluency 
Test (measure of verbal fluency and involves 
generating words within specific semantic or 
phonemic categories), Test of Sequencing or the 
Motor Series Luria Test (evaluates an individual’s 
ability to sequence and organize motor movements 
in a prescribed order), and Backward Digit Span 
(measure of working memory capacity and 
manipulation).13

	 All participants underwent brain MRI on a 
1.5T MRI scanner. Sequences included diffusion-
weighted, T1-weighted, T2-weighted imaging, 
and fluid-attenuated inversion recovery (FLAIR) 
with 3D image of T1 sequences (using GE 
SIGNA MRI Scanners). The FLAIR sequences 
were obtained using TR, 9000 ms; TE, 104 ms; 
TI, 2500 ms; slice thickness, 5.0 mm; and gap, 
0.0 mm. We have used GCA-scale for Global 
Cortical Atrophy, MTA-scale for Medial Temporal 
lobe Atrophy, Koedam score for parietal lobe 
atrophy. We defined white matter hyperintensity 
as the presence of hyperintensity in the white 
matter area. Periventricular hyperintensity and 
deep white matter hyperintensity lesions were 
outlined. Also, regional deep white matter 
hyperintensity within bilateral areas of the cornu, 
frontale, pars parietalis, cornu occipitale, and pars 
temporalis/lobar; and within bilateral areas of 
the frontal, parietal, occipital and temporal lobes 
were assessed. White matter hyperintensity was 
assessed by Fazekas scale.  



711

	 Images of MRI Brain were assessed by one 
Senior Neurologist (Senior Professor) from 
Neurology Department and one Radiologist 
(Senior Professor from Radiology Department). 
They are unaware of patients’ clinical condition. 
(Blinding was done). Above findings were 
compared with normal age and gender-based 
control images by radiologist (senior professor 
from radiology department).
	 The data obtained was manually entered into 
Microsoft Excel and analyzed using Software 
for Statistics and Data Science (Stata) v16. 
Descriptive analysis was presented using numbers 
and percentages for categorical variables; mean 
and standard deviation or median and interquartile 
range for continuous variables. Chi square test of 
significance (two-sided) or independent “t” tests 
(two-sided) was applied to test for association. 
Statistical significance was considered at p<0.05. 
Multivariate analysis by binary logistic regression 
was done to predict MRI Brain findings in patients 
with executive dysfunction. 

RESULTS

The mean (SD) age of the male and female 
participants was 67.32 years (5.9) and 66.27 

years (9.25). We included a total of 50 males 
and 21 females – the number of male patients 
with executive dysfunction was significantly 
higher (p<0.001) than the female patients with 
executive dysfunction (Table 1). However, the 
difference between mean ages of male and 
female patients was not statistically significant 
(p>0.05). Regarding the independent variables 
considered in the present study, the proportion of 
patients with hypertension was 61.97%, positive 
smoking history was 60.56%, history of alcohol 
intake was 46.47%, elevated HbA1c levels was 
25.35%, dyslipidaemia was 33.80%, elevated 
creatinine level was 5.63% and elevated urea 
level was 25.35%.

MRI brain findings in patients with executive 
dysfunction: The results of the present study found 
that the proportion of patients with dorsolateral 
atrophy was significantly higher (p<0.001) among 
patients with executive dysfunction (83.10%) 
(Table 2). However, the proportion of patients 
without atrophy of the medial lobe (60.56%), 
orbitofrontal (88.73%), parietal lobe (69.01%), 
occipital lobe (87.32%), pons (91.55%) and 
cerebellar lobe (78.87%) had significantly higher 
ED in comparison with patients having atrophy.   

	
Figure 1. Workflow of the study
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The results also found that the difference in 
proportion of patients with executive dysfunction 
with or without atrophy of temporal lobe 
and atrophy of midbrain was not statistically 
significant (p>0.05).

Multivariate analysis: A logistic regression 
analysis was done to predict brain lesion (based 
on MRI brain findings) among 71 executive 
dysfunction patients; the predictors considered 
in the present study were hypertension, 
smoking history, alcohol, elevated HbA1c level, 
dyslipidaemia, elevated creatinine level and 
elevated urea level (Table 3).
	 The Wald criterion demonstrated that 
the hypertension, smoking history, alcohol, 
elevated HbA1c level, dyslipidaemia, elevated 
creatinine levels and elevated urea levels made a 
nonsignificant contribution to predict dorsolateral 
atrophy, medial frontal  lobe atrophy, occipital 
and cerebellar atrophy (p>0.05). 
	 We found that smoking had a significant 
negative contribution (protective factor) towards 
predicting the atrophy of orbitofrontal lobe 

(p<0.05). However, hypertension, alcohol use, 
elevated HbA1c levels, dyslipidaemia, elevated 
creatinine levels and elevated urea levels made a 
nonsignificant contribution to predict the atrophy 
of orbitofrontal lobe (p>0.05). 
	 The results showed that hypertension 
significantly contributed to predict the atrophy 
of temporal lobe and parietal lobe (p<0.05). 
However, alcohol use, smoking, elevated HbA1c 
levels, dyslipidaemia, elevated creatinine levels 
and elevated urea levels made a nonsignificant 
contribution to predict the atrophy of temporal 
and parietal lobe (p>0.05).

White matter hyperintensity in patients with 
executive dysfunction: The number of patients 
with hyperintensity of periventricular area was 
significantly higher among executive dysfunction 
patients (85.92%) (Table 4). However, the number 
of patients without hyperintensity of temporal 
(91.55%), parietal (90.14%) and occipital 
(94.37%) areas was significantly higher among 
executive dysfunction patients (p<0.05). We 
did not find any difference in the white matter 
hyperintensity of basal ganglia and frontal areas 
(p>0.05). 

Multivariate analysis: The Wald criterion 
demonstrated that elevated HbA1c levels and 
smoking significantly contributed to predict the 
white matter hyperintensity of basal ganglia 
(p<0.05). However, hypertension, alcohol, 
dyslipidemia, elevated creatinine levels and 
elevated urea levels made a nonsignificant 
contribution to predict the white matter 
hyperintensity of basal ganglia (p>0.05) (Table 5).
The present study also found that hypertension 
and alcohol use significantly predicted white 
matter hyperintensity in the frontal area (p<0.05). 

Table 1: Demographic profile and Proportion of 
patients, present with risk factor

Present (n) Present (%)
Male 50 70.42
Female 21 29.58
Hypertension 44 61.97
Smoking 43 60.56
Alcohol 33 46.47
Elevated HbA1c 18 25.35
Dyslipidemia 24 33.80
Elevated creatinine 4 5.63
Elevated urea 18 25.35

 

Table 2: MRI brain finding in patients with executive dysfunction

MRI brain finding Yes No p valueN % N %
Atrophy of dorsolateral 59 83.10 12 16.90 <0.001
Atrophy of medial lobe 28 39.44 43 60.56 0.019
Atrophy of orbitofrontal 8 11.27 63 88.73 <0.001
Atrophy of temporal lobe 41 57.75 30 42.25 0.093
Atrophy of parietal lobe 22 30.99 49 69.01 <0.001
Atrophy of occipital lobe 9 12.68 62 87.32 <0.001
Atrophy of midbrain 29 40.85 42 57.15 0.063
Atrophy of pons 6 8.45 65 91.55 <0.001
Atrophy of cerebellar 15 21.13 56 78.87 <0.001
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However, none of the predictors considered in 
the study significantly predicted white matter 
hyperintensity in periventricular, temporal, 
parietal and occipital areas (p>0.05).  

DISCUSSION 

The present study aimed to investigate the 
relationship between gray matter volume, white 
matter changes, and executive function among 
older Indian adults with vascular risk factors. The 
results revealed interesting findings regarding the 
association between specific brain regions’ atrophy 
and executive dysfunction in this population. The 
results indicated that the proportion of patients 
with dorsolateral atrophy was significantly higher 
among patients with executive dysfunction. The 
dorsolateral prefrontal cortex (DLPFC) is known 
to be involved in various executive functions, 
such as working memory, cognitive flexibility, 
and inhibitory control.14-17 Damage or atrophy 
in this region can lead to impairments in these 
cognitive processes, which are characteristic of 
executive dysfunction. Interestingly, the results 
showed that patients without atrophy in certain 
brain regions, such as the medial frontal lobe, 
orbitofrontal cortex, partial lobe, occipital lobe, 
pons, and cerebellar lobe, had a higher proportion 
of executive dysfunction compared to patients 
with atrophy in those regions. These findings 
suggest that executive dysfunction may not be 
solely attributed to atrophy in these specific 
brain regions among older adults with vascular 
risk factors.
	 It is important to consider the potential 
underlying mechanisms that may contribute 
to these findings. Vascular risk factors, such 
as hypertension, diabetes, and atherosclerosis, 
can lead to cerebral small vessel disease (SVD) 
and contribute to white matter changes.18 White 
matter hyperintensities (WMH) commonly 
associated with SVD have been linked to executive 
dysfunction.19 Therefore, the observed executive 
dysfunction in patients without atrophy in certain 
brain regions could be related to white matter 
changes rather than gray matter atrophy alone.
	 The lack of a statistically significant difference 
in the proportion of patients with executive 
dysfunction, with or without atrophy of the 
temporal lobe and midbrain, is an interesting 
finding. Previous studies have reported the 
involvement of the temporal lobe in executive 
functions, particularly in tasks requiring episodic 
memory and semantic processing.20 However, the 
absence of a significant association in this study 
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suggests that other factors, such as white matter 
changes or the influence of vascular risk factors, 
may contribute more prominently to executive 
dysfunction in this population.
	 The present study employed logistic regression 
analysis to predict brain lesion based on MRI 
brain findings among 71 executive dysfunction 
patients. The results indicated that hypertension, 
smoking history, alcohol use, elevated HbA1c 
level, dyslipidemia, elevated creatinine level, 
and elevated urea level did not significantly 
contribute to predicting dorsolateral atrophy, 
medial lobe atrophy, occipital lobe atrophy, and 
cerebellar atrophy. These findings suggest that 
these factors may not play a significant role in 
the development of atrophy in these specific brain 
regions among executive dysfunction patients 
in the present study. However, it is important to 
note that these results do not imply the absence 
of any relationship between these predictors and 
brain atrophy. Other factors, such as the sample 
size, heterogeneity of the patient population, and 
the specific characteristics of the vascular risk 
factors, may have influenced the lack of significant 
associations in this study.
	 Smoking history was found to have a significant 
negative contribution (a protective factor) in 
predicting the atrophy of the orbitofrontal lobe. 
This finding suggests that smoking may have a 
potential protective effect against orbitofrontal 
lobe atrophy among executive dysfunction 
patients. However, it is crucial to interpret this 
finding with caution due to the well-established 
detrimental effects of smoking on overall health, 
including the increased risk of various diseases, 
including cardiovascular and cerebrovascular 
conditions.
	 Hypertension was found to have a significant 
contribution in predicting the atrophy of the 
temporal lobe and parietal lobe. This finding 
aligns with previous research that has consistently 
linked hypertension to structural brain changes, 
including atrophy in specific brain regions.21-24 

Hypertension can lead to vascular damage, such 
as arteriosclerosis and impaired cerebral blood 
flow, which can contribute to brain atrophy.25 The 
association between hypertension and atrophy 
in the temporal and parietal lobes may have 
implications for the cognitive functions associated 
with these brain regions, including memory and 
attention.
	 The results showed that the number of patients 
with hyperintensity in the periventricular area was 
significantly higher among executive dysfunction 
patients. Periventricular hyperintensity is 
commonly associated with white matter changes 
and cerebral SVD.26 These hyperintensities 
often result from chronic ischemia and damage 
to small vessels in the brain, which can lead to 
cognitive impairment.27 The higher prevalence of 
periventricular hyperintensity among executive 
dysfunction patients suggests that white matter 
changes in this region may contribute to the 
development of executive dysfunction. In contrast, 
the number of patients without hyperintensity in 
the temporal and parietal areas was significantly 
higher among executive dysfunction patients. 
The temporal and parietal lobes are involved in 
various cognitive functions, including memory, 
attention, and language processing.28 White 
matter hyperintensities in these areas have been 
associated with cognitive impairment and an 
increased risk of dementia.29 The lower prevalence 
of hyperintensities in the temporal and parietal 
areas among executive dysfunction patients 
may indicate a different underlying etiology or 
pathophysiological mechanism contributing to 
their cognitive impairment. Literature evidence 
highlights that WMHs displayed by MRI such as 
of the periventricular and parietal white matter 
regions have been shown to be a risk factor for 
the conversion from mild cognitive impairment 
(MCI) to AD.30 The comorbidities associated 
with white matter hyperintensities include 
hypertension, dyslipidemia, tobacco use, ischemic 
heart disease, previous stroke, atrial fibrillation, 

Table 4: White matter hyperintensity in patients with ED

MRI brain finding
Yes No

Test of significance
N % N %

Basal ganglia area 40 56.34 31 43.66 0.179
Periventricular area 61 85.92 10 14.08 <0.001
Frontal area 21 29.58 50 70.42 0.585
Temporal area 6 8.45 65 91.55 <0.001
Parietal area 7 9.86 64 90.14 <0.001
Occipital area 4 5.63 67 94.37 <0.001
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chronic renal failure, hyper-homocystinuria and 
bariatric surgery.31,32

	 Interestingly, no significant difference was 
found in the white matter hyperintensities of 
the basal ganglia and frontal areas between 
executive dysfunction patients and the comparison 
group. The basal ganglia and frontal areas 
are also implicated in executive functions.33,34  
White matter changes in these regions have 
been associated with executive dysfunction and 
cognitive decline.35 The lack of a significant 
difference in hyperintensities in these areas among 
executive dysfunction patients in the present study 
may be influenced by various factors, including 
the heterogeneity of the patient population and 
the specific characteristics of the vascular risk 
factors.
	 The findings of the study revealed associations 
between certain predictors and white matter 
hyperintensity in specific brain regions. The 
results demonstrated that elevated HbA1c 
levels and smoking significantly contributed to 
the prediction of white matter hyperintensity 
in the basal ganglia. Elevated HbA1c levels, 
which reflect long-term glucose control and are 
commonly used as a marker for diabetes, have 
been associated with microvascular damage and 
cerebral small vessel disease (SVD).36-39 This 
vascular damage can lead to white matter changes 
and the development of hyperintensity in the 
basal ganglia. Smoking, on the other hand, is 
known to contribute to endothelial dysfunction, 
oxidative stress, and inflammation, all of which 
can adversely affect the integrity of cerebral 
blood vessels and contribute to white matter 
hyperintensity.40 However, hypertension, alcohol 
use, dyslipidemia, elevated creatinine levels, and 
elevated urea levels did not significantly contribute 
to the prediction of white matter hyperintensity 
in the basal ganglia. These findings may suggest 
that the impact of these factors on white matter 
changes in this specific brain region is not as 
pronounced or that other factors not considered in 
the present study may have influenced the results. 
It is important to consider that the relationship 
between vascular risk factors and white matter 
changes can be complex and may vary depending 
on the specific brain regions and the underlying 
pathophysiology involved.26

	 The study also found that hypertension and 
alcohol use significantly predicted white matter 
hyperintensity in the frontal area. Hypertension, 
as a major risk factor for cerebrovascular disease, 
can lead to structural changes and compromised 
blood flow in the frontal regions, resulting in white 
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the atrophy of temporal lobe and parietal lobe; 
and white matter hyperintensity of frontal area. 
Elevated HbA1c levels and smoking to WMH 
of basal ganglia; and alcohol ingestion to WMH 
of frontal area were significant predictors. It is 
understood that modifying and treating vascular 
risk factors can prevent progression of executive 
dysfunction and these findings emphasize the 
complex nature of the relationship between 
vascular risk factors, cognitive impairment, and 
brain structure. Further research with larger 
sample sizes and a more comprehensive approach 
is needed to confirm and expand upon these 
findings.
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