Contrast-induced encephalopathy following intraarterial iodinated contrast media injection in patients with atherosclerotic cardiovascular disease: A retrospective analysis

^{1,2}Dongxia Jin *MD*, ²XiMing Li *MD PhD*, ²Hongliang Cong *MD PhD*, ²Tingting Li *MD*,³Hua Chen *MD*, ²Wei Mi *Phar.B.*

¹Chest Clinical Medical College of Tianjin Medical University, Tianjin; ²Department of Cardiology, Tianjin chest hospital of Tianjin University, Tianjin; ³Department of Emergency Medicine, The fifth affiliated hospital, Sun Yat-sen University, Zhuhai, China.

Abstract

Background & Objective: This study examined the current status of contrast-induced encephalopathy (CIE) following intra-arterial iodinated contrast media injection in patients with atherosclerotic cardiovascular disease (ASCVD). Specifically, we aimed to examine the clinical, epidemiological characteristics, pathogenic mechanisms, and clinical symptoms of CIE in patients with ASCVD in order to promote its prompt diagnosis and treatment. Methods: Chinese and English scientific databases were searched using the following search terms: atherosclerotic cardiovascular disease, contrastinduced encephalopathy, neurotoxicity, encephalopathy, brain injury, cortical blindness, cerebral/carotid arteriography, cardiac catheterization, coronary angiography, percutaneous coronary intervention, and peripheral arteriography. The retrieved articles and references of the primary articles were used to collect the basic information. SPSS 20.0 and Excel statistic software were used to conduct this retrospective analysis. Results: A total of 89 cases consisting of 87 patients were identified. Of all the patients, 59 (67.05%) were male. Patients had an average age of 67.12 + 10.51 years. In addition, 64 (73.56%) had hypertension, 26 (29.89) had diabetes mellitus, 14 (16.09%) had renal impairment, and 5 (5.75%) had old cerebral infarction or transient cerebral ischemia. The mean and median volumes of administered iodinated contrast media were 228.41 and 190 ml, respectively (range: 25-1500 ml). The symptoms included cortical blindness (24.72%), delirium (13.48%), hemiplegia (10.11%), seizure (8.99%), and ophthalmoplegia (5.62%). The symptoms typically appeared within minutes to hours following the contrast administration and always resolved entirely within 24-72 hours. Only 4 patients suffered irreversible damage; 1 of these patients died after 56 days of treatment.

Conclusions: CIE is a rare complication during the intervention procedure. It has variable presentations with an excellent prognosis. Nevertheless, it can result in clinical complications, such as neurological sequelae or even death on rare occasions. Therefore, physicians should pay close attention to implementing appropriate measures.

Keywords: Atherosclerotic cardiovascular disease, contrast-induced encephalopathy, brain injury, retrospective analysis, case report.

INTRODUCTION

The incidence of cardiac catheterization-associated cerebrovascular complications is estimated to range between 0.05-0.10% for diagnostic coronary angiography and 0.12-0.40% for percutaneous coronary intervention (PCI). Additionally, the neurological adverse effects of contrast media used for cerebral angiography have an estimated

1-2% prevalence rate.² Contrast-induced encephalopathy (CIE) is an acute but reversible neurological disturbance associated with the intraarterial administration of an iodinated contrast medium during an intervention procedure. Its symptoms may manifest as encephalopathy, motor and sensory and vision disturbances, including cortical blindness, ophthalmoplegia, aphasia,

Address correspondence to: Ximing Li, MD. and Ph.D., and Hongliang Cong, MD and Ph.D, Department of Cardiology, Tianjin chest hospital, Tianjin, 300222, China. Email: ljsunlight@126.com, hongliangcong@163.com

Date of Submission: 12 October 2021; Date of Acceptance: 12 August 2022 https://doi.org/10.54029/2022vyj and seizures. The syndrome's pathophysiology is mainly implicated due to the disruption of the blood-brain barrier and direct neuronal toxicity. Generally, CIE following intervention procedures is rare and sparsely documented in the literature. All previous studies²⁻¹³ have mainly focused on the sporadic case reports. Therefore, the current study focuses on the patients with CIE following atherosclerotic cardiovascular disease (ASCVD). A descriptive analysis was conducted for the epidemiological characteristics, risk factors, clinical symptoms, and prognosis in this retrospective research. The study's outcome will help the clinicians broaden their understanding of the disease's diagnosis treatment and lay the foundation for further studies.

METHODS

Study population

We searched scientific databases including PubMed, OVID MEDLINE, CNKI, Embase, and Wan Fang, using various combinations of the following search terms: atherosclerotic cardiovascular disease, iodine contrast, neurotoxicity, encephalopathy, contrast-induced encephalopathy, cortical blindness, coronary angiography, cardiac catheterization, and percutaneous coronary intervention in the English and Chinese languages from 1970 to June 2020. In addition, the reference lists of each article were retrieved, manually searched, and cross-checked.

Definitions

The National Lipid Association (2014) defined ASCVD as the myocardial infarction, acute coronary syndrome, coronary revascularization, ischemic stroke or transient ischemic attack, a peripheral arterial disease with an ankle-brachial index < 0.9, renal atherosclerosis, aortic aneurysm from atherosclerosis, and carotid plaque $\geq 50\%$ stenosis.¹

The diagnosis of CIE is based on the symptoms and signs of neurological dysfunction such as 1) temporally related to intervention procedures, manifesting within minutes to hours of the administration of the iodine-based contrast agent; and 2) not attributable to other pathological processes, including cerebrovascular ischemia or hemorrhage, seizure disorder, metabolic abnormalities and drugs, arterial dissection, and air embolization. Delirium was defined as an acute-onset mental state that included confusion, dysphoria, paraphasia, inattention, and difficulty orienting to a place or person. A seizure was defined as sudden confusion with limb convulsion. Onset time was defined as the time from the end of surgery until the appearance of the first CIE symptom.

Statistics

Continuous variables were presented as mean±standard deviation and compared using unpaired Student's t-tests. Categorical data were presented as frequencies and compared using x^2 or Fisher's exact tests. Finally, the correlations were examined using Pearson's tests. A p < 0.05 was considered statistically significant.

RESULTS

Baseline demographics

We identified a total of 89 cases (8 case series and 54 case reports) for 87 patients. Of these patients, 2 (1 male and 1 female) experienced recurrent CIE in several years. The patient's clinical data are detailed in Supplementary Table S1.²⁻⁶³ Of the 88 patients, 59 (67.05%) were male, and 28 (32.95%) were female. Patient's ages conformed to a normal distribution, with a minimum of 39, a maximum of 89, with an average of 67.12 ± 10.51 years. see Table 1).

Hypertension, diabetes mellitus (DM), and renal impairment were suggested as risk factors of CIE. We collected the patient's medical history for hypertension, DM, chronic kidney disease (CKD), including renal impairment and renal dialysis. We also examined the patient's medical history to identify patients with an old cerebral infarction (OCI) or transient cerebral ischemia (TIA). There were 64 (73.56%) hypertensive and 23 (26.43%) non-hypertensive patients. The proportion of hypertension was 1.78 times higher than non-hypertension. There were 26 DM (29.89%) patients and 61 (70.11%) non-DM patients. 14 (16.09%) patients had CKD, 5 patients (5.75%) had a history of OCI or TIA, 18 patients had both hypertension and DM. Total 9 patients had both hypertension and renal impairment, 2 had DM and CKD, and 2 had the merging of 3 factors (see Table 1).

Of the 89 cases of 87 patients, 72 (80.90%) had coronary heart disease. Specifically, 13 (14.61%) patients had an acute myocardial infarction, and 59 (66.29%) had unstable or stable angina pectoris (of these, 2 were diagnosed with unstable pectoris

	Variables		Number (n)	Percent (%)
Age (yrs)				
		~40	1	1.12
		41~50	5	5.62
		51~60	14	15.73
		61~70	27	30.34
		71~80	32	35.96
		81~90	9	10.11
		Unknown	1	1.12
Gender				
		Male	59	67.05
		Female	28	32.95
Previous history				
	Hypertension	Yes	64	73.56
		No	23	26.43
	Diabetes mellitus	Yes	26	29.89
		No	61	70.11
	CKD	Yes	14	16.09
		No	73	83.91
	OCI/TIA	Yes	5	5.75
		No	82	94.25
Diagnosis of diseas	e distribution			
	CHD		72	80.90
		AMI	13	14.61
		AP	59	66.29
	Carotid/cerebral artery ste	enosis	12	13.48
	Renal artery stenosis		3	3.37
	Other peripheral vascular	diseases	2	2.25
Procedure patients	underwent			
		Angiography	35	46.07
	Diagnos	stic and Stenting	53	59.55
	Transcatheter aortic va	lve replacement	1	1.12
Total			89	100.00

Table 1: The baseline data of all CIE cases

Abbreviations: CKD, chronic kidney disease including renal impairment or patients who needed renal dialysis; OCI, old cerebral infarction; TIA, transient cerebral ischemia; AMI, acute myocardial infarction; AP, angina petites; ACI, acute cerebral infarction.

twice, respectively). In addition, 12 (13.48%) patients had a cerebral vascular disease and acute cerebral infarction (ACI) and TIA, and 3 (3.37%) had renal artery stenosis. Additionally, 2 patients (2.25%) were diagnosed with other peripheral vascular diseases, and 1 patient was diagnosed with 100% obstruction of the right common iliac

artery (see Table 1).

Procedure patients underwent

A total of 35 (46.07%) patients underwent diagnostic procedures, including coronary artery angiography, carotid artery angiography, cerebral

artery angiography, renal artery angiography. While 53(59.55%) patients underwent diagnostic and stenting, including PCI and carotid artery stenting, and 1 (1.12%) patient underwent transcatheter aortic valve replacement (see Table 1).

Type and volume of iodinated contrast media

Iodinated contrast media can be categorized based on their physical and chemical characteristics, such as chemical structure, osmolarity, iodine content, and the ionization properties in the solution.² Contrast media compounds may be monomeric or dimeric. Monomeric contrast molecules contain 1 benzene ring and 3 iodine atoms. In addition, iodinated contrast compounds may be ionic or non-ionic. Ionic compounds break up into anion and cation components in a solution, whereas non-ionic compounds do not. In this study, the mean and median volumes of administered iodinated contrast media were 228.41 and 190 ml, respectively (range: 25-1500 ml). High-osmolarity contrast media was used in 8.99% (8/89) of cases, while low-osmolarity contrast media and iso-osmolar compounds were used in 73/89 (82.02%) and 1/89 (1.12%) of patients, respectively (see Table 2).

Clinical manifestations, treatments, and outcomes of CIE patients

Concerning symptomatology, emotion and sensory disturbances, encephalopathy, vision disturbance, ophthalmoplegia, hemiplegia, global aphasia, and seizures were described. Transient cortical blindness was the most common manifestation of CIE and occurred in 23 of the 89 (24.72%) cases. The other reported symptoms included delirium (13.48%), hemiplegia (10.11%), seizures (8.99%), and ophthalmoplegia (5.62%). Nonspecific symptoms such as dizziness, headache, and restlessness occurred in 30.08% of cases (see Table 3).

Most of the patients (71/89; 79.78%) received only supportive treatment, 5 patients underwent dialysis or hemodialysis, 5 patients received intubation and ventilation, 2 patients received cardiopulmonary resuscitation (CPR), and 1 patient had a temporary transvenous pacemaker installed. Most of the patients (85/89; 95.51%) recovered completely, and only 4 patients suffered from irreversible damage (1 suffered from righthand muscle strength decline, 1 suffered from blepharoptosis and diplopia, 1 suffered from persistent forgetfulness with vision loss, and 1 patient died from CIE after 56 days of treatment).

Contrast media	Туре	Number (n)	minimal volume (ml)	maximum volume (ml)	median volumes (ml)	Mean volumes (ml)
СМ	iodinated	89*	25.00	1500.00	190	228.41
diatrozoate	high-osmolarity, ionic monomer	8	48.00	800.00	219	294.00
iobitridol	low-osmolarity, ionic dimer	1	75.00	75.00	75	75.00
iodixanol	low-osmolarity, non-ionic monomer	13	50.00	350.00	150	176.92
iohexol	low-osmolarity, non-ionic monomer	9	100.00	250.00	180	165.56
iomeprol	low-osmolarity, non-ionic monomer	7	150.00	500.00	320	337.14
iopamidol	low-osmolarity, non-ionic monomer	8	80.00	415.00	250	233.89
iopromide	low-osmolarity, non-ionic monomer	22	25.00	300.00	155	174.09
ioversol	low-osmolarity, non-ionic monomer	6	100.00	370.00	226	225.33
ioxaglate	iso-osmolar, non-ionic dimer	1	230	230.00	230	230.00
unknown	unknown	7	-	-	-	-

 Table 2: The type and volume of iodinated contrast media used

Note:*the contrast media volume of 11 cases is unknown, including 3 cases of iohexol;1 case of iopamidol, and 7 cases without the name and type of the contrast media information.

Variables	Number (n)	Percent (%)
Clinical manifestations		
Cortical blindness	22	24.72
Ophthalmoplegia	5	5.62
Seizures	8	8.99
Hemiplegia	9	10.11
Delirium	12	13.48
Nonspecific symptoms	33	30.08
Symptom duration (hrs)		
<6h	12	13.48
6~12h	10	11.24
12~24h	17	19.10
24~48h	20	22.47
48~72h	11	12.36
72~96h	2	2.25
96~120h	8	8.99
>120h	9	10.11
Total	89	100.00

Table 3: Clinical manifestations and symptom duration of CIE patients

Abbreviations: h, hours.

Onset time and duration

Symptoms and signs of neurological dysfunction manifested within minutes to hours (up to 72 hrs) post-surgery and the administration of an iodinebased contrast agent. Most patients, 78.82% (67/85), recovered fully within 72 hrs; however, 22.35% (19/85) needed more time to recover. The median time to complete symptom resolution was 31 hrs. The relief time was unrelated to age, dosage, or risk factors (see Table 3).

Neuroimaging by CT/MRI

CIE diagnosis requires the absence of hemorrhage or embolism demonstrated by neuroimaging using computed tomography (CT) or magnetic resonance imaging (MRI). The most commonly reported abnormalities on the CT brain scans were cortical or subcortical contrast enhancements. Other findings included cerebral edema, focal hyperdense lesions, and hyper densities in the cerebral sulci. However, in the 24 cases, neuroimaging was normal.

DISCUSSION

With the ever-growing use of vascular intervention for diagnostic and therapeutic methods (including cerebral/carotid arteriography, cardiac catheterization, and peripheral arteriography), associated complications are more likely to arise. CIE is a rare complication resulting from the contrast-based procedures of arterial access. The neurological adverse effects of contrast media from invasive cerebral angiography have a prevalence rate of 1-2%.64 However, CIE following cardiac catheterization procedures is rare, with a prevalence rate of 0.05–0.4%.65,66 The contrast media investigations, including carotid arteries and vertebral circulation interventions, are frequently but rarely associated with CIE. The CIE cases after coronary artery angiography have been first reported as far back as 1970.62 So far only Spina et al. has summarized five case series and 38 case reports, for a total of 52 patients who recovered well⁶⁷; while we collected a larger number of 89 patients, including 4 cases suffered from irreversible damage even death.

The precise mechanism of CIE is poorly understood. However, the physical and chemical properties of contrast media can result in the osmotic disruption of the blood-brain barrier. In contrast, the hyperosmolarity and direct neurotoxicity of extravasated contrast media cause cerebral edema.⁶⁸ Theoretically, the incidence of blood-brain barrier disruption should be higher with hyperosmolar contrast media use than the lower osmolarity or iso-osmolar contrast media used. This phenomenon is associated with the former contrast media greater osmotic force on the endothelial cells in cerebral arterioles, capillaries, and venules, causing cell shrinkage and cell separation at tight junctions and promoting flow into the extravascular compartment.68-70 However, previously we have reported that CIE occurs with both high- and low-osmolar solutions and even with iso-osmolar solutions.²⁹ The hyperosmolarity of contrast media and its blood-brain barrier permeability can cause contrast extravasation to the cerebral space, while the iso-osmolar contrast medium can induce CIE.32 The occipital cortex is the most vulnerable region, as it is the primary region of the blood-brain barrier with high permeability.71

Additionally, the uncontrolled elevation of systemic blood pressure can exceed the autoregulatory capacity of the cerebral vessels, compounded by an elevation in intraluminal pressure arising from the pressure injection of the contrast media. This cascade leads to increasing vascular wall tension and widens gap junctions, resulting in the blood-brain barrier breakdown. With the disruption of the blood-brain barrier, the extravasation of contrast media to the interstitial space causes the direct stimulation of neural cells and results in neurotoxicity. However, the mechanism of direct neuronal toxicity is not yet clear. Therefore, further research is required to delineate the mechanism of CIE.

Patients with chronic hypertension, male gender, impaired cerebral autoregulation, transient ischemic attack, impaired renal function, large contrast volumes, and the selective angiography of internal mammary grafts are at a higher risk of developing the condition.⁷¹⁻⁷³ In our study, most patients with transient encephalopathy following intra-arterial contrast injection had a history of chronic hypertension (63/88) and were male (71.59%). The presence of precedent TIA and OCI, coupled with the altered permeability of the bloodbrain barrier, could have predisposed patients to CIE. Besides, impaired renal function leads to decreased clearance and prolonged exposure to contrast media. However, the relationship between contrast medium volume and CIE remains unclear. Although large contrast volumes are more likely to cause CIE, a study has shown that a local injection of 25 mL of contrast medium to the carotid artery could also cause CIE.³⁰

The presentation of CIE is highly variable and ranges from subtle (such as headache) to more extreme features (such as coma or unresponsiveness). It may also manifest with localized cortical and subcortical deficits (e.g., hemiparesis, hemianopia, cortical blindness, and speech changes) and global syndromes (e.g., confusion, seizure, and coma).74-76 In our study, 24.72% of patients had cortical blindness, 13.48% had delirium, 10.11% had hemiplegia, 8.99% had seizures, and 5.62% had ophthalmoplegia. Furthermore, 30.08% of patients had non-specific symptoms, including dizziness, headache, and restlessness. However, cortical blindness was the most common symptom. On rare occasions, CIE may result in fatal cerebral edema.⁸⁰ Unfortunately, a female patient died in this study following 56 days of CIE.8 Currently, no effective treatment is available for such severe fatal CIE. However, in one study, Junck and Marshall⁷⁸ reported that iodine concentrations in patient's post-mortem tissues such as urine, serum, and kidney were the highest. Thus, continuous renal replacement therapy and blood purification may be potential treatments for cases of fatal CIE.

The symptoms of CIE typically appear soon after the end of the surgery or after contrast administration as reported. The neurological deficits last from 15 minutes to 5 days in most cases. In this retrospective research study, onset time was defined as the time from artery injection to onset of clinical symptoms to avoid the effects of surgery duration on the results. The shortest onset time was less than 5 minutes after contrast administration. The finding suggests that cerebral vasospasm and contrast-induced hypersensitivity may play essential roles in the pathogenesis of CIE.79 Given these uncertainties and the rare occurrence of CIE, the definite recommendations beyond general safety measures are difficult to apply in all patients undergoing a procedure with contrast. However, we recommend that the contrast volume be kept to a minimum with the well-hydrated state of patients before and after the procedure. We also recommend using isotonic, non-ionic contrasts, especially in patients at high risk of encephalopathy.

In most cases of CIE, the prognosis has been excellent, with rapid recovery (with only supportive therapy). It is recommended in the immediate postprocedural period that intravenous hydration should be used, and patients are closely monitored. An anti-convulsant to treat seizures and intravenous mannitol and methyl-prednisone have been used to reduce cerebral edema without adverse consequences.³² On rare occasions, CPR, intubation, and ventilation were also used. In our analysis, 2 patients suffered from recurrent CIE, while 4 suffered from irreversible damage, out of which 1 patient died from CIE after 56 days of treatment. This case represented a significantly prolonged neurological recovery time with a very unfortunate ending compared to similar cases with normal CT findings.

Close monitoring is vital as some of these patients may deteriorate and require a highdependency level of care. Recognition of CIE at an early stage is crucial to exclude potentially detrimental neurologic presentations, such as ischemic or hemorrhagic events. Early diagnosis can also prevent the inappropriate administration of potentially harmful treatment, such as thrombolysis. Follow-up examinations after discharge are essential to identify any residual neurological deficits.

In conclusion, CIE is a rare complication but has a good prognosis during an intervention procedure. However, it can give rise to some clinical complications, such as neurological sequelae or even death in rare cases. Therefore, doctors performing angiography and interventions should be aware of its severe and potentially harmful effects. Due to its rare occurrence, preventing severe contrast-induced complications are very difficult. Further studies are warranted to define the risk factors and the mechanism associated with iodinated contrast agent neurotoxicity to help minimize the severe complications.

DISCLOSURE

Financial support: None

Conflict of interest: None

REFERENCES

- Jacobson TA, Ito MK, Maki KC, *et al.* National Lipid Association recommendations for patient-centered management of dyslipidemia: Part 1-Executive Summary. *J Clin Lipidol* 2014;8:473-88. DOI: 10.1016/j.jacl.2014.07.007.
- Harada Y, Kairamkonda SR, Ilyas U, *et al.* Pearls & Oy-sters: Contrast-induced encephalopathy following coronary angiography: A rare stroke mimic. *Neurology* 2020;94(23):e2491-e2494. DOI: 10.1212/ WNL.000000000009590.
- Lei P, He W, Shi Q, Sun M, Sun Z. Recurrent epileptic seizures following cardiac catheterization with iodixanol: a case report. *BMC Cardiovasc Disord* 2020;20(1):79. DOI: 10.1186/s12872-020-01341-3.
- Neilan P, Urbine D. A case of contrast-induced encephalopathy. *BMJ Case Rep* 2019;12(11):e229717. DOI: 10.1136/bcr-2019-229717.
- 5. Renault P, Rouchet S. Transient global amnesia

and transient cortical blindness secondary to contrast induced encephalopathy after renal artery angiography. *Rev Neurol* (Paris) 2019;175(5):335-6. DOI: 10.1016/j.neurol.2018.08.010.

- de Falco A, De Simone M, d'Onofrio F, Spitaleri D, de Falco FA. Posterior reversible encephalopathy syndrome overlapping contrast-induced encephalopathy after coronary angiography. *Neurol Sci* 2019;40(9):1951-3. DOI: 10.1007/s10072-019-03810-w.
- Şimşek EÇ, Ertürk E, Uçar R, et al. Transient contrast neurotoxicity after percutaneous coronary intervention mimicking subarachnoid hemorrhage in a patient with chronic kidney disease. Clin Med Insights Case Rep 2019;12:1179547619867671. DOI: 10.1177/1179547619867671.
- Zhao W, Zhang J, Song Y, *et al.* Irreversible fatal contrast-induced encephalopathy: a case report. *BMC Neurol* 2019;19(1):46. DOI: 10.1186/s12883-019-1279-5.
- Eleftheriou A, Rashid AS, Lundin F. Late transient contrast-induced encephalopathy after percutaneous coronary intervention. *J Stroke Cerebrovasc Dis* 2018;27(6):e104-e106. DOI: 10.1016/ j.jstrokecere brovasdis.2017.12.051.
- Heemelaar JC, van der Hoeven NW, Muller FF, Appelman Y. Acute-onset coma after iso-osmolar iodinated contrast injection: a case report of contrastinduced encephalopathy after elective coronary angiography. *Eur Heart J Case Rep* 2018;2(4):yty132. DOI: 10.1093/ehjcr/yty132.
- Hirata S, Koga M, Iseki H. Contrast-induced encephalopathy after coronary angioplasty in a patient with ST-elevation myocardial infarction. *Heart Asia* 2018;10(1):e010987. DOI: 10.1136/ heartasia-2017-010987.
- Kahyaoğlu M, Ağca M, Çakmak EÖ, Geçmen Ç, İzgi İA. Contrast-induced encephalopathy after percutaneous peripheral intervention. *Turk Kardiyol Dern Ars* 2018;46(2):140-2. DOI: 10.5543/ tkda.2017.16517.
- Dattani A, Au L, Tay KH, Davey P. Contrast-induced encephalopathy following coronary angiography with no radiological features: A case report and literature review. *Cardiology* 2018;139(3):197-201. DOI: 10.1159/000486636.
- Hamra M, Bakhit Y, Khan M, Moore R. Case report and literature review oncontrast-induced encephalopathy. *Future Cardiol* 2017;13(4):331-5. DOI: 10.2217/fca-2016-0075.
- 15. Wang XF, Li G, Shen W, Wang L. A case of contrast-induced encephalopathy after carotid stent implantation. *Neural Injury Functional Reconstruction* 2016;11:459-60.
- Zhao W, Hou YW, Zhang HL, Guo ZY. 2 cases of contrast-induced encephalopathy and relevant literature review. *Chinese J Urban Rural Enterprise Hygiene* 2016;178(8):89-90.
- Li JR, Cao H, Chen LM, Li SH, Shen X. The clinical analysis of 2 cases of contrast agent encephalopathy caused by cerebral angiography. *Guizhou Med J* 2016,40(3):278-9.
- 18. Spina R, Simon N, Muller DWM, Kathir K. Recurrent

contrast-induced encephalopathy following coronary angiography. *Intern Med J* 2015,36(9):975-7. DOI: 10.1111/imj.13321.

- Li JT, Sun XD, Li S, Xiao YL, Wang J. Clinical analysis and review of the literature of cortical blindness after cerebral angiography. *J Taishan Med Coll* 2015; 36:975-7
- Raju NSG, Joshi D, Daggubati R, Movahed A. Contrast induced neurotoxicity following coronary angiogram with Iohexol in an end stage renal disease patient. *World J Clin Cases* 2015; 3:942-5. DOI: 10.12998/wjcc.v3.i11.942.
- Liang W, Yang Y, Tan C, Liang JC. 5 cases of contrastinduced encephalopathy after percutaneous coronary interventional therapy. *Med J Chin People's Armed Police Forces* 2014; 25(10):1043-4. DOI:10.14010/j. cnki.wjyx.2014.10.025.
- 22. Xie CY, Liu F, Wang RY, Xie JP. Nurising care of 1 case of patient undergoing coronary artery intervention treatment complicated with contrast agent encephalopathy. *Chinese Nurs Res* 2014,28(8):2941-2.
- Wang J, Ye F, Zhang WJ, Qin BY, Liu NN. 1 case of contrast-induced encephalopathy and relevant literature review. *Practical J Clin Med* 2014,11:216-7.
- 24. Sun SJ, Li WZ, Xu Y, Xu WH. The clinical features of the contrast agent encephalopathy after the intervention of ACS patients. *Shandong Med J* 2014; 54(21):36-7.
- Kocabay G, Karabay CY, Kalayci A, *et al.* Contrastinduced neurotoxicity after coronary angiography. *Hertz* 2014; 39:522-7. DOI: 10.1007/s00059-013-3871-6.
- Sridhar GS, Sadiq MA, Wan Ahmad WA, et al. Transient cortical blindness: A benign but devastating complication after coronary angiography and graft study. J Pak Med Assoc 2014; 64:1195-7.
- Adnan S, Ahmad MA, Meher NA, Raihan R. Postangiography contrast-induced encephalopathy. *Bangladesh Crit Care J* 2014; 2(2):85-6.
- Liao MT, Lin TT, Lin YL, Hwang JJ, Tseng CD. Contrast induced encephalopathy after percutaneous coronary intervention. *Acta Cardiol Sin* 2013;29:277-80.
- 29. Law S, Panichpisal K, Melaku D, *et al.* Contrastinduced neurotoxicity following cardiac catheterization. *Case Rep Med* 2012;2012:267860. DOI: 10.1155/2012/267860.
- Potsi S, Chourmouzi D, Moumtzouoglou A, Nikiforaki A, Gkouvas K, Drevelegas A. Transient contrast encephalopathy after carotid angiography mimicking diffuse subarachnoid haemorrhage. *Neurol Sci* 2012;33:445-8. DOI: 10.1007/s10072-011-0765-3.
- 31. Li JY, Yao X, Wang YW, *et al*. A case of contrastinduced encephalopathy after coronary angiography. *Chin J of Clin Rational Drug Use* 2012;5:74.
- Chisci E, Setacci F, Donato G, de Setacci C. A case of contrast-induced encephalopathy using iodixanol. *J Endovasc Ther* 2011; 18:540-4. DOI: 10.1583/11-3476.1.
- Akhtar N, Khatri IA, Naseer A, Ikram J, Ahmed W. Transient cortical blindness after coronary

angiography: A case report and literature review. J Pak Med Assoc 2011; 61:295-7.

- Gurer B, Yilmaz ER, Kahveci R, Sekerci Z. Non-ionic contrast media neurotoxicity mimicking intracerebral hematoma. *Acta Neurochir* 2011; 153:419-20. DOI: 10.1007/s00701-010-0780-9.
- Wilczewska R, Kulakowska A, Korneluk-Sadzynska A, Borowik H, Drozdowski W. Transient neurological deficit due to neurotoxicity of contrast medium used for coronary angiography. *Aktualn Neurol* 2010; 10:172-5.
- Alp BN, Bozburga N, Tuncer MA, Yakut C. Transient cortical blindness after coronary angiography. *J Int Med Res* 2009; 37:1246-51. DOI: 10.1177/147323000903700433.
- Borghi C, Saia F, Marzocchi A, Branzi A. The conundrum of transient cortical blindness following coronary angiography. *J Cardiovasc Med* 2008;9:1063-5. DOI: 10.2459/JCM.0b013e3282fe1718.
- Gonzalez IA, Tapia C, Hernandez-Luis C, San Roman JA. Contrast neurotoxicity following percutaneous revascularization. *Rev Esp Cardiol* 2008;61:892-8.
- Sawaya RA, Hammoud R, Arnaout S, Alam S. Contrast-induced encephalopathy following coronary angioplasty with iohexol. *South Med J* 2007; 100:1054-5. DOI: 10.1097/SMJ.0b013e3181540086.
- 40. Yazici M, Ozhan H, Kinay O, *et al*. Transient cortical blindness after cardiac catheterization with iobitridol. *Tex Heart Inst J* 2007;34:373-5.
- Tatli E, Buyuklu M, Altun A. An unusual but dramatic complication of coronary angiography: Transient cortical blindness. *Int J Cardiol* 2007;121:e4-e6. DOI: 10.1016/j.ijcard.2007.04.129.
- 42. Yue XH, Li ZR, Xi GM. 3 cases of acute mental disorder caused by iodide. *Chin J Psychiatry* 2007;40:14.
- Danenberg HD, Lotan C. Nonrecurring transient cortical blindness after coronary angiography: A role for hypoventilation and hypercarbia? *Catheter Cardiovasc Interv* 2006; 67:384-5. DOI: 10.1002/ ccd.20635.
- 44. Velden J, Milz P, Winkler F, Seelos K, Hamann GF. Nonionic contrast neurotoxicity after coronary angiography mimicking subarachnoid hemorrhage. *Eur Neurol* 2003;49:249-51. DOI: 10.1159/000070198.
- Gellen B, Remp T, Mayer T, Milz P, Franz WM. Cortical blindness: A rare but dramatic complication following coronary angiography. *Cardiology* 2003; 99:57-9. DOI: 10.1159/000068443.
- 46. Yildiz A, Yencilek E, Apaydin FD, Duce MN, Ozer C, Atalay A. Transient partial amnesia complicating cardiac and peripheral arteriography with nonionic contrast medium. *Eur Radiol* 2003; 13:L113-L115. DOI: 10.1007/s00330-003-1975-8.
- Merchut MP, Richie B. Transient visuospatial disorder from angiographic contrast. *Observation* 2002; 59:851-4. DOI: 10.1001/archneur.59.5.851.
- Radford DJ, Lim KK. Transient cortical blindness related to coronary angiography and graft study. *Med J Aust* 2002; 177:43-4. DOI: 10.5694/j.1326-5377.2002.tb04636.x.
- 49. Zwicker JC, Sila CA. MRI findings in a case

of transient cortical blindness after cardiac catheterization. *Catheter Cardiovasc Interv* 2002; 57:47-9. DOI: 10.1002/ccd.10246.

- Dangas G, Monsein LH, Laureno R, et al. Transient contrast encephalopathy after carotid artery stenting. J Endovasc Ther 2001; 8:111-3. DOI: 10.1177/152660280100800202.
- Kwok BW, Lim TT. Cortical blindness following coronary angiography. *Singapore Med J* 2000;41:604-5.
- 52. Vranckx P, Ysewijn T, Wilms G, Heidbuchel H, Herregods MC, Desmet W. Acute posterior cerebral circulation syndrome accompanied by serious cardiac rhythm disturbances: A rare but reversible complication following bypass graft angiography. *Catheter Cardiovasc Interv* 1999; 48:397-401. DOI: 10.1002/(sici)1522-726x(199912)48:4<397::aidccd16>3.0.co;2-c.
- Sharp S, Stone J, Beach R. Contrast agent neurotoxicity presenting as subarachnoid hemorrhage. *Neurology* 1999; 52:1503-5. DOI: 10.1212/ wnl.52.7.1503.
- Sticherling C, Berkefeld J, Auch-Schwelk W, Lanfermann H. Transient bilateral cortical blindness after coronary angiography. *Lancet* 1998; 351:570. DOI: 10.1016/S0140-6736(05)78557-3.
- Antonellis J, Kostopoulos K, Rambaouni A, et al. Cortical blindness following coronary arteriography: A rare but self-cured complication. Two case reports. Angiology 1996; 47:803-6. DOI: 10.1177/000331979604700808.
- Muruve DA, Steinman TI. Contrast-induced encephalopathy and seizures in a patient with chronic renal insufficiency. *Clin Nephrol* 1996; 45:406-9.
- Kamata J, Fukami K, Yoshida H, *et al.* Transient cortical blindness following bypass graft angiography. A case report. *Angiology* 1995; 46:937-46. DOI: 10.1177/000331979504601009.
- Rama BN, Pagano TV, DelCore M, Knobel KR, Lee J. Cortical blindness after cardiac catheterization: Effect of re-challenge with dye. *Cathet Cardiovasc Diagn* 1993; 28:149-51. DOI: 10.1002/ccd.1810280211.
- Parry R, Russell Rees J, Wilde P. Transient cortical blindness after coronary angiography. *Br Heart J* 1993; 70:563-4. DOI: 10.1136/hrt.70.6.563.
- Kinn RM, Breisblatt WM. Cortical blindness after coronary angiography: A rare but reversible complication. *Cathet Cardiovasc Diagn* 1991; 22:177-9. DOI: 10.1002/ccd.1810220305.
- Utz R, Ekholm SE, Isaac L, Sands M, Fonte D. Local blood-brain barrier penetration following systemic contrast medium administration. *Acta Radiologica* 1988; 29(2):237-42.
- 62. Haley EC J. Encephalopathy following arteriography: A possible toxic effect of contrast agents. *Ann Neurol* 1984; 15:100-2. DOI: 10.1002/ana.410150118.
- Fischer-Williams M, Gottschalk PG, Browell JN. Transient cortical blindness. An unusual complication of coronary angiography. *Neurology* 1970; 20:353-5. DOI: 10.1212/wnl.20.4.353.
- Lantos G. Cortical blindness due to osmotic disruption of the blood–brain barrier by angiographic contrast material: CT and MRI studies. *Neurology*1989; 39:567-71. DOI: 10.1212/wnl.39.4.567.

- Dukkipati S, O'Neill WW, Harjai KJ, et al. Characteristics of cerebrovascular accidents after percutaneous coronary interventions. J Am Coll Cardiol 2004;43: 1161-7. DOI: 10.1016/j. jacc.2003.11.033.
- 66. Segal AZ, Abernethy WB, Palacios IF, BeLue R, Rodorf G. Stroke as a complication of cardiac catheterization: risk factors and clinical features. *Neurology* 2001; 56:975-7. DOI: 10.1212/ wnl.56.7.975.
- Spina R, Simon N, Markus R, Muller DW, Kathir K. Contrast-induced encephalopathy following cardiac catheterization. *Catheter Cardiovasc Interv* 2017; 90(2):257-68. DOI: 10.1002/ccd.26871.
- Torvik A, Walday P. Neurotoxicity of water-soluble contrast media. *Acta Radiol Suppl* 1995; 399:221-9. DOI: 10.1177/0284185195036s39927.
- Junck L, Marshall WH. Neurotoxicity of radiological contrast agents. *Ann Neurol* 1983; 13:469-84. DOI: 10.1002/ana.410130502.
- Velaj R, Drayer B, Albright R, Fram E. Comparative neurotoxicity of angiographic contrast media. *Neurology* 1985; 35:1290-8. DOI: 10.1212/ wnl.35.9.1290.
- Muruve DA, Steinman TI. Contrast-induced encephalopathy and seizures in a patient with chronic renal insufficiency. *Clin Nephrol* 1996; 45:406-9.
- Potsi S, Chourmouzi D, Moumtzouoglou A, Nikiforaki A, Gkouvas K, Drevelegas A. Transient contrast encephalopathy after carotid angiography mimicking diffuse subarachnoid haemorrhage. *Neurol Sci* 2012; 33(2):445-8. DOI: 10.1007/s10072-011-0765-3.
- Frantz WM. Cortical blindness following coronary angiography in a patient with LIMA bypass graft and end stage renal failure. *Proc Euro PCR* 2006; 21–24, Paris, France.
- Dangas G, Monsein LH, Laureno R, et al. Transient contrast encephalopathy after carotid artery stenting. *J Endovasc Ther* 2001; 8:111-3. DOI: 10.1177/152660280100800202.
- 75. Guimaraens L, Vivas E, Fonnegra A, et al. Transient encephalopathy from angiographic contrast: A rare complication in neurointerventional procedures. *Cardiovasc Intervent Radiol* 2010;33:383-8. DOI: 10.1007/s00270-009-9609-4.
- May EF, Ling GS, Geyer CA, Jabbari B. Contrast agent overdose causing brain retention of contrast, seizures and parkinsonism. *Neurology* 1993; 43:836-8. DOI: 10.1212/wnl.43.4.836.
- Leong S, Fanning NF. Persistent neurological deficit from iodinated contrast encephalopathy following intracranial aneurysm coiling: a case report and review of the literature. *Interv Neuroradiol* 2012; 18(1):33-41. DOI: 10.1177/159101991201800105.
- Junck L, Marshall WH. Fatal brain edema after contrast-agent overdose. *AJNR Am J Neuroradiol* 1986;7(3):522-5.
- Zhang G, Wang H, Zhao L, *et al.* Contrast-induced encephalopathy resulting from use of ioversol and iopromide. *Clin Neuropharmacol* 2020; 43(1):15-9. DOI: 10.1097/WNF.000000000000374.

Study/year	gender	age	ΗT	DM	TIA/OCI	CKD	Contrast	Contrast Volume (ml)	diagnose	procedure
Harada, 2020^2	F	72	yes				I	210	STEMI	CAG+PCI
Lei, 2020 ³ *	Μ	76	yes	yes	yes		iodixanol	80	UAP	CAG
	Μ	76	yes	yes	yes		iodixanol	150	UAP	CAG+PCI
Neilan, 2019 ⁴	Μ	81	yes				iopamidol	250	CAD, abdominal aortic aneurysm, peripheral vascular disease	TAVR transcatheter aortic valve replacement
Renault, 2019 ⁵	Μ	49	yes			yes	iohexol	I	Renal artery stenosis	renal artery angiography
Defalco, 20196	Ł	82	yes			yes	iohexol	I	atheromasic coronaries	CAG
Şimşek, 2019 ⁷	Μ	68	yes	yes		yes	iohexol	110	CHD	CAG+PCI
Zhao, 2019 ⁸	Ч	71	yes		yes	yes	iopamidol	110	cerebral artery stenosis, CHD	cerebral magnetic resonance angiography (MRA)
Eleftheriou, 2018 ⁹	F	57	yes	yes			iodixanol	130	SAP	CAG+PCI
Heemelaar, 2018 ¹⁰	Ц	67	yes	yes			iodixanol	100	UAP	CAG
Hirata, 2018 ¹¹	Μ	75		yes			iopamidol	I	STEMI	CAG+PCI
Kahyaoğlu, 2018 ¹²	М	66					iohexol	250	right common iliac artery 100% obstruction	Lower extremity angiography and stent
Dattani, 2018 ¹³	Μ	76	yes	yes			iohexol	120	CHD	CAG
Mardi H, 2017^{14}	Μ	62	yes				iohexol	200	CHD	CAG
wangXF, 2016 ¹⁵	F	55					I	I	Carotid artery stenosis	CAS
Zhao W, 2016 ¹⁶	M	61	yes	yes			I	ı	Carotid artery stenosis	CAS

E1

Study/year	gender	age	HT	DM	TIA/OCI	CKD	Contrast	Contrast Volume (ml)	diagnose	procedure
Li JR, 2016 ¹⁷	Μ	67	yes	yes			iohexol	I	ACI	cerebral angiography
	W	78					iohexol	I	Carotid artery stenosis	CAS
Spinal. 2016 ¹⁸	Μ	65	yes				iopromide	110	CHD	CAG
Li JT, 2015 ¹⁹	F	58	yes				iodixanol	06	Carotid artery stenosis	cerebral angiography
Raju G, 2015 ²⁰	F	44	yes	yes		yes	iohexol	190	CHD	PCI
Li W, 2014 ²¹	Μ	64	yes	yes			iopromide	180	UAP	PCI
	Μ	75		yes			iopromide	150	STEMI	PCI
	Μ	88	yes				iopromide	200	STEMI	PCI
	F	70	yes				iopromide	230	UAP	PCI
	Μ	73	yes	yes			iopromide	300	STEMI	PCI
Xie CY, 2014 ²²	Μ	84	yes				iodixanol	70	ACS	PCI
Wang J, 2014 ²³	Μ	64	yes				iohexol	ı	CABG-Carotid artery stenosis	CAS
Sun SJ, 2014 ²⁴	Μ	75		yes			iopromide	150	NSTEMI	PCI
	Μ	88					iodixanol	150	UAP	PCI
	Μ	89	yes	yes			iodixanol	300	UAP	PCI
	Μ	74	yes				iodixanol	350	NSTEMI	PCI
	Μ	78		yes			iodixanol	210	UAP	PCI
	Μ	61	yes				iodixanol	50	CHD	PCI
	F	69		yes		yes	iopromide	150	UAP	PCI
	Μ	83		yes			iopromide	250	UAP	PCI
Kocabay, 2013 ²⁵	Μ	68	yes				iopromide	250	UAP	PCI
	Μ	47	yes				iopromide	150	STEMI	PCI
	Σ	70		yes			iopromide	120	STEMI	PCI

Study/year	gender	age	HT	DM	TIA/OCI	CKD	Contrast	Contrast Volume (ml)	diagnose	procedure
	F	58	yes				iopromide	220	SAP	PTCA
	Μ	70	yes				iopromide	130	UAP	PCI
	Μ	63	yes				iopromide	280	STEMI	PCI
	Μ	68	yes	yes			iopromide	180	SAP	PCI
	М	72	yes				iopromide	140	SAP	CAG
	Μ	65	yes				iopromide	130	SAP	PCI
Ganiga SS, 2014 ²⁶	Μ	63	yes	yes			iopromide	250	UAP, CABG	PCI
Adnan S, 2014^{27}	М	70	yes			yes	iopromide	75	CHD	CAG
Liao.MT, 2013 ²⁸	F	76	yes	yes			ioversol	150	UAP	PCI
Susan L, 2012 ^{29*}	F	69	yes	yes			iodixanol	320	UAP, CABG	CAG
	F	68	yes	yes			ı	I	UAP, CABG	CAG
Potsi S, 2012 ³⁰	F	71	yes		yes		iopromide	25	Carotid artery stenosis	Carotid arteriography
Li JY, 2012 ³¹	Ь	70					iopamidol	300	UAP	PCI
Chisci.E, 2011 ³²	Ц	76	yes	yes	yes	yes	iodixanol	300	UAP, CABG	PTCA+CAS
Akhtar.N, 2011 ³³	Μ	39					iopamidol	80	UAP, CABG	CAG
Gure, 2011 ³⁴	Μ	69					iohexol	100	ACS	PCI
Wilczewska, 2010 ³⁵	Ч	70					I	I	UAP	PCI
BN ALP, 2009 ³⁶	Μ	56	yes				iohexol	220	UAP, PCI, CABG	PCI
Borghi, 2008 ³⁷	Μ	73	yes				iomeprol	320	UAP	PCI
González, 2008 ³⁸	F	70	yes				I	1500	UAP	PTCA
Raja A, 2007 ³⁹	F	ı					iohexol	120	AMI	PCI
Yazici.M, 2007 ⁴⁰	F	70	yes	yes			iobitridol	75	UAP	CAG
Tatli, 2007 ⁴¹	ц	52					iomeprol	150	SAP	CAG

Study/year	gender	age	HT	DM	TIA/OCI	CKD	Contrast	Contrast Volume (ml)	diagnose	procedure
Yue XH, 2007 ⁴²	ц	75	yes				iohexol	I	cerebral artery stenosis	Cerebral artery stenting
Danenberg, 2006 ⁴³	Μ	73					I	240	ACS	PCI
Velden J, 2003 ⁴⁴	Н	82	yes			yes	iomeprol	500	UAP	PCI
Gellen.B, 2003 ⁴⁴	М	52	yes			yes	iopamidol	400	UAP, CABG	CAG
Yildiz A, 2003 ⁴⁵	Μ	63					iomeprol	450	CHD	CAG
Merchut MP, 2002 ⁴⁶	Ц	74	yes			yes	iopamidol	415	Renal artery stenosis	Renal arteriography
Dorothy JR, 2002 ⁴⁷	F	63	yes	yes			iopromide	160	CABG, UAP	CAG
Zwicker JC, 2002 ⁴⁸	Н	52	yes			yes	ioversol	280	CHD	PCI
Dangas G, 2001 ⁴⁹	М	82	yes				ioxaglate	230	CHD, carotid artery stenosis	CAS
Kwok BW, 2000 ⁵⁰	Μ	53					ioversol	100	CHD	CAG
Vranckx.P, 1999 ⁵¹	Μ	68	yes	yes			iohexol	180	CABG, AMI	CAG
Sharp.S, 1999 ⁵²	F	73	yes				diatrozoate	800	UAP	PCI
Sticherling C, 199853	Μ	55					iomeprol	280	CABG, UAP	CAG
Antonellis J, 1996 ⁵⁴	Μ	58	yes				iomeprol	260	CABG, UAP	CAG
	Μ	64					iomeprol	400	CABG, UAP	CAG
Muruve, 1996 ⁵⁵	Μ	49	yes			yes	diatrozoate	700	UAP	PCI
Kamata.J, 1995 ⁵⁶	Μ	62	yes				iopamidol	170	CABG, UAP	CAG
Rama BN, 1993 ⁵⁷	Μ	59	yes				ioversol	370	AMI	PTCA
	Μ	45	yes				ioversol	190	OMI, UAP	PTCA
	Μ	68	yes				ioversol	262	UAP	PTCA
Parry R, 199 ³⁵ 8	М	62	yes				iopamidol	270	CHD	CAG

KinnRM,1991 ⁵⁹	M 55	55				diatrozoate	228	CABG, UAP	CAG
	M 61	61				diatrozoate	210	CABG, UAP	CAG
Utz.R,1988 ⁶⁰	F	74	yes		yes	diatrozoate	250	Renal artery stenosis	Abdominal aortography
Haley EC J, 1984 ⁶²	Μ	70	yes			diatrozoate	56	carotid artery stenosis	Carotid arteriography
	М	74		yes		diatrozoate	48	carotid artery stenosis	Carotid arteriography
Fischer, 1970 ⁶³	F	56	yes			diatrozoate	09	UAP	CAG
Note: *recurrent cases.									

impairment or patients who needed renal dialysis. CHD, coronary heart disease. AMI, acute myocardial infarction. AP, angina petites. unstable angina petites. SAP, stable angina petites. ACI, acute cerebral infarction. TIA, transient cerebral ischemia. CAG, Coronary angiography. PTCA, percutaneous coronary balloon dilatation. PCI, percutaneous coronary intervention. Abbreviations: F, female; M, male. HT, hypertension. DM, diabetes mellitus. OCI, old cerebral infarction. TIA, transient cerebral ischemia. CKD, chronic kidney disease including renal CABG, coronary artery bypass graft. CAS, carotid artery stent.

Neurology Asia

Study/year	Coma (severe neurological symptoms)	syncope	cortical blindness	ophthal- moplegia	seizures	Hemiplegia, prosopoplegia	Delirium Confusion	nonspecific symptoms	Onset-time	duration	treatment	Complete resolution
Harada, 2020^{2}							Yes		Immediately	48h	Supportive care	yes
Lei, 2020 ³ *					Yes			Yes	20h	4d	Supportive care	yes
					Yes			Yes	2h	6h	Supportive care	yes
Neilan, 2019 ⁴		Yes						Yes	90min	48h	Supportive care	yes
Renault, 20196							Yes	Yes	15min	p9	Anticonvulsive medication	yes
Defalco, 2019 ⁷			Yes		Yes			Yes	6h	7d	Supportive care	yes
Şimşek, 2019 ⁸					Yes				4h	409	Antiepileptic medication	yes
Zhao, 2019 ⁹ #	Yes								10min	56d	CPR, intubation, ventilation	No(die)
Eleftheriou, 2018 ¹⁰					Yes			Yes	27h	5d	antiepileptic medication	yes
Heemelaar, 2018 ¹¹	Yes								minutes	58h	Intubation, ventilation	yes
Hirata, 2018 ¹²	Yes							Yes	Ċ	12d	Intubation, ventilation	yes
Kahyaoğlu, 2018 ¹³					Yes				1h	24h	hydration and sedative medication	yes
Dattani,2018 ¹⁴			Yes				Yes	Yes	90min	p6	Supportive care	yes
Mardi H,2017 ¹⁵			Yes						Immediately	48h	Supportive care	yes
wangXF,2016 $^{\rm 16}$							Yes	Yes	40m	6d	Supportive care	yes
Zhao W,2016 ¹⁷	Yes				Yes			Yes	5h	5d	Supportive care	yes
Li JR,2016 ¹⁸					Yes				4h	48h	Supportive care	yes
					Yes				18h	72h	Supportive care	yes
Spinal.2016 ¹⁹							Yes		minutes	24h	Supportive care	yes

Table s1 The baseline data of all the cases included

Neurology Asia

Study/year	Coma (severe neurological symptoms)	syncope	cortical blindness	ophthal- moplegia	seizures	Hemiplegia, prosopoplegia	Delirium Confusion	nonspecific symptoms	Onset-time	duration	treatment	Complete resolution
Li JT,201 5^{20}	Yes							Yes	30min	5d	Supportive care	yes
Rain G 2015 ²¹									Few hours	ЧСС	Anticonvul-	yes
0107(O.n/m)					Yes	Yes				117 /	hemodial ysis	
Li W,2014 ²²			Yes						2h	14h	Supportive care	yes
								Yes	18h	25h	Supportive care	yes
							Yes	Yes	13h	15h	Supportive care	yes
							Yes		immediately	5h	Supportive care	yes
								Yes	20min	3h	Supportive care	yes
Xie CY,2014 ²³							Yes		1h	10h	Supportive care	yes
Wang J, 2014 ²⁴ #					Yes		Yes		2h	15d	Supportive care	No(right hand
												muscle strength decline)
Sun SJ, 2014 ²⁵							Yes		18h	7h	Supportive care	yes
								Yes	13h	23h	Supportive care	yes
							Yes		0.3h	1.5h	Supportive care	yes
							Yes		22h	27h	Supportive care	yes
							Yes		5h	19h	Supportive care	yes
							Yes		0.2h	5h	Supportive care	yes
								Yes	23h	12h	Supportive care	yes
								Yes	15h	26h	Supportive care	yes
G.Kocabay, 2013 ²⁶						Yes			4h	12h	Supportive care	yes
							Yes	Yes	1h	8h	Supportive care	yes
							Yes	Yes	1h	12h	Supportive care	yes

Study/year	Coma (severe neurological symptoms)	syncope	cortical blindness	ophthal- moplegia	seizures	Hemiplegia, prosopoplegia	Delirium Confusion	nonspecific symptoms	Onset-time	duration	treatment	Complete resolution
#				Yes					0.5h		Supportive care	No (blepha- roptosis, diplopia)
							Yes		2h	14h	Supportive care	yes
							Yes	Yes	0.5h	10h	Supportive care	yes
				Yes					1h	30h	Supportive care	yes
							Yes	Yes	3h	12h	Supportive care	yes
								Yes	2h	16h	Supportive care	yes
Ganiga.S.S, 2014 ²⁷			Yes						0.5h	72h	Supportive care	yes
Adnan.S, 2014 ²⁸							Yes	Yes	3h	Seveal hours	dialysis	yes
Liao.M.T, 2013 ²⁹			Yes			Yes			immediately	48h	Supportive care	yes
Susan.L,2012 ³⁰ *					Yes	Yes		Yes	12h	7d	intravenous ben- zodiazepines, thrombolysis	yes
					Yes	Yes					Supportive care	yes
Potsi S,2012 ³¹						Yes	Yes		immmedi- ately	4d	Supportive care	yes
Li JY,2012 ³²							Yes	Yes		5h	Supportive care	yes
Chisci.E,2011 ³³	Yes					Yes			Immediately	48h	intravenous mannitol, meth- ylprednisone	yes
Akhtar.N, 2011 ³⁴			Yes						immediatly	1h	Supportive care	yes
Gure,2011 ³⁵						Yes	Yes	Yes	0.5h	6h	Supportive care	yes
Wilczewska, 2010 ³⁶				Yes	Yes				I	72h	Supportive care	yes
BN ALP, 2009 ³⁷			Yes						72h	4d	Supportive care	yes

Study/year	Coma (severe neurological symptoms)	syncope	cortical blindness	ophthal- moplegia	seizures	Hemiplegia, prosopoplegia	Delirium Confusion	nonspecific symptoms	Onset-time	duration	treatment	Complete resolution
Borghi, 2008 ³⁸			Yes					Yes	shortly	24h	Supportive care	yes
González, 2008 ³⁹								Yes	ı	24h	Supportive care	yes
Raja A,2007 40							Yes		I	48h	Supportive care	yes
Yazici.M,200741			Yes					Yes	I	72h	Supportive care	yes
Tatli,2007 ⁴²			Yes					Yes	45min	Sh	Supportive care	yes
Yue XH,2007 ⁴³							Yes	Yes	immediately	72h	Supportive care	yes
Danenberg, 2006 ⁴⁴			Yes						2h	7h	Supportive care	yes
Velden J,2003 ⁴⁵					Yes	Yes			30m	40h	Supportive care	yes
Gellen.B, 200346			Yes					Yes	30m	72h	Supportive care	yes
Yildiz A,200 3^{47}							Yes		immediately	12h	Intravenous dexamethasone	yes
MerchutMP, 2002 ⁴⁸				Yes				Yes	1d	4d	Supportive care	yes
Dorothy.JR, 2002 ⁴⁹			Yes						immediately	5d	Supportive care	yes
Zwicker JC, 2002 ⁵⁰			Yes					Yes	2h	36h	Supportive care	yes
Dangas G, 2001 ⁵¹						Yes	Yes		immediately	48h	Supportive care	yes
Kwok BW, 200052			Yes					Yes	30m	12h	Supportive care	yes
Vranckx.P, 1999 ⁵³ #			Yes	Yes				Yes	45m	6d	CPR, temporary transvenous pacemaker	No (Forget- ting and vision loss)
Sharp.S, 1999 ⁵⁴					Yes	Yes				24h	Intubation and ventilation, ben- zodiazepines	yes
SticherlingC, 1998 ⁵⁵			Yes						10min	5d	Supportive care	yes

Study/year	Coma (severe neurological symptoms)	syncope	cortical blindness	ophthal- moplegia	seizures	Hemiplegia, prosopoplegia	Delirium Confusion	nonspecific symptoms	Onset-time	duration	treatment	Complete resolution
Antonellis J, 1996 ⁵⁶			Yes							32h	Intravenous dexamethasone	yes
			Yes							30h	Intravenous dexamethasone	yes
Muruve, 1996 ⁵⁷					Yes					48h	Hemodialysis, anticonvulsants	yes
Kamata.J, 1995 ⁵⁸			Yes							48h	Supportive care	yes
RamaBN, 199359			Yes					Yes	30min	12h	Supportive care	yes
			Yes					Yes	mins	24h	Supportive care	yes
				Yes					1h	15min	Supportive care	yes
Parry R, 1993 ⁶⁰			Yes							72h	Supportive care	yes
KinnRM,199161			Yes							24h	Supportive care	yes
			Yes							36h	Supportive care	yes
Utz.R,198862			Yes			Yes			30h	5w	dialysis	yes
Haley EC J, 198463							Yes	Yes	immediately	8d	Supportive care	yes
							Yes		hours	48h	Supportive care	yes
M.Fischer, 1970 ⁶⁴			Yes						-	18h	Supportive care	yes
Note:* the recurrent cases.	cases.											

impairment or patients who needed renal dialysis. CHD, coronary heart disease. AMI, acute myocardial infarction. AP, angina petites. unstable angina petites. SAP, stable angina petites. ACI, acute cerebral infarction. TIA, transient cerebral ischemia. CAG, Coronary angiography. PTCA, percutaneous coronary balloon dilatation. PCI, percutaneous coronary intervention. CABG, coronary artery bypass graft. CAS, carotid artery stent. H for hours, min for minutes, d for days, w for weeks. Abbreviations :F for female, M for male. HT,hypertension. DM, diabetes mellitus. OCI, old cerebral infarction. TIA, transient cerebral ischemia. CKD, chronic kidney disease including renal