Craniotomy versus endoscopic approach in basal ganglia haemorrhage: A systematic review and meta-analysis

¹Tze Khiang Tan, ²Joseph Merola, ³Malik Zaben, ⁴William P. Gray, ³Paul Leach

¹Sir Charles Gairdner Hospital, Perth, WA, Australia; ²Neurosciences Department, University Hospital of Wales, Cardiff, UK; ³Neurosurgery, University Hospital Wales, Cardiff, UK; ⁴Institute of Psychological Medicine and Clinical Neurosciences, National Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK

Abstract

Objectives: Basal ganglia haemorrhage (BGH) is the most common type of intracerebral bleed with high morbidity and mortality rate. Despite advancements in minimally invasive techniques in recent years, the efficacy between craniotomy and endoscopic approach for BGH is still debatable. The aim of this systematic review and meta-analysis was to evaluate the outcomes of craniotomy and endoscopic approach for BGH. Methods: Databases of Pubmed, EMBASE, MEDLINE and CENTRAL were systematically searched from its inception until December 2020. All randomized clinical trials and observational studies comparing craniotomy versus endoscopic approach in BGH were included. Results: Twelve studies enrolling 1,297 patients (craniotomy:675, endoscopy:632) were included for qualitative and quantitative analysis. Endoscopic approach was associated with significantly lower postoperative mortality (OR:0.35, P<0.001), higher haematoma evacuation rate (MD:4.95, P<0.001), shorter operative time (MD:-117.03, P<0.001), lower intraoperative blood loss (MD:-328.47, P<0.001), higher postoperative Glasgow Coma Scale (GCS) (MD:1.14, P=0.01), higher postoperative Glasgow Outcome Scale (GOS) (MD:0.44, P=0.05), shorter length of hospital stay (MD:-2.90, P<0.001), lower complication rate (OR:0.30, P=0.001), lower infection rate (OR:0.29, P<0.001) and lower modified Rankin Scale (mRS) (MD:-0.57, P=0.004) compared to craniotomy. No significant difference was detected in re-operation, and re-bleeding.

Conclusion: The best available evidence suggest that endoscopic approach has better outcomes in mortality rate, operative time, haematoma evacuation rate, intraoperative blood loss, length of hospital stay, mRS, postoperative GCS and GOS compared with craniotomy in the management of BGH. However, there is a need for high quality randomised controlled trials with large sample size for definitive conclusions.

Keywords: Endoscopy, craniotomy, basal ganglia haemorrhage, meta-analysis

INTRODUCTION

Spontaneous intracerebral haemorrhage (sICH) contributes approximately 15% of strokes and affects more than 5 million people per year.^{1,2} They commonly occur within the basal ganglia and can lead to life-threatening situations as a result of brain stem compression, haematoma expansion and raised intracranial pressure. Furthermore, due to the blood degradation products, secondary brain injury arises, leading to inflammation, neurotoxicity and development of perihematomal oedema, eventually resulting

in increase of mass effect.³⁻⁶ The benefit of surgical evacuation of sICH over conservative management remains controversial and is widely debated in the literature.

Surgical evacuation of ICH has long been the preferred choice. However, a meta-analysis of randomised controlled trials comparing surgical treatment and minimally invasive approach in spontaneous ICH did not produce robust results.⁷ Mendelow *et al.* (2005) reported neutral conclusions overall between surgery and conservative management for all types of sICH in the landmark STICH trial (Surgical Trials in

Address correspondence to: Dr Tze Khiang Tan; Sir Charles Gairdner Hospital, Perth, WA, Australia; email: khiang94@gmail.com Date of Submission: 27 September 2021; Date of Acceptance: 1 October 2021 https://doi.org/10.54029/2022nzf Intracerebral haematoma).⁸ The findings led to a second trial showing a small but clinically relevant survival advantage for those patients who underwent surgery for superficial lobar haemorrhages.⁹ The MISTIE (Minimally Invasive Surgery Plus Rt-PA for ICH Evacuation) II trial reported better functional outcome when patients were treated with minimally invasive surgery and thrombolysis.¹⁰

Although minimally invasive surgery may provide better recovery and potentially lower morbidity and mortality, craniotomy still plays an important role in this critical condition for example, in cases where there is large haematoma volume or cerebral oedema. When comparing treatment strategies in management of basal ganglia haemorrhage (BGH), the efficacy between craniotomy and neuroendscopy is still debatable due to the limited evidence.¹¹⁻¹⁴ While there are a handful of meta-analyses investigating the outcomes between craniotomy and neuroendoscopy for sICH, there is a paucity of information available for the management in BGH alone. Hence, a systematic review and metaanalysis is warranted to comparatively assess the use of neuroendoscopy and craniotomy in BGH.

The primary aim of this systematic review and meta-analysis was to compare the mortality rate and haematoma evacuation rate in neuroendoscopy and craniotomy. Secondary aims were to examine the outcomes on operative time, intraoperative blood loss, postoperative Glasgow Coma Scale (GCS), postoperative Glasgow Outcome Scale (GOS), shorter length of hospital stay, complication rate, infection rate, modified Rankin Scale (mRS), reoperation rate, intracranial infection and re-bleeding rate.

METHODS

This systematic review was conducted based on an agreed predefined protocol and is presented as per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement standards.¹⁵The protocol was published online on PROSPERO (CRD42020206525).

Criteria for considering studies for this review

Types of studies: We included all comparative studies (randomised controlled trials [RCTs] and observational studies) comparing the outcomes of neuroendoscopy and craniotomy for the evacuation of basal ganglia haemorrhage.

Inclusion criteria were: 1) Age > 18 years old;

2) Spontaneous basal ganglia haemorrhage; 3) Haematoma volume more than 25 ml; 4) GCS: 4 to 14; 5) Studies that compared craniotomy and endoscopy approach in basal ganglia haemorrhage

Exclusion criteria were: 1) Patients with secondary basal ganglia haemorrhage caused by vascular malformation, aneurysm, trauma, coagulopathy, intracranial tumour or moyamoya disease; 2) Multiple intracranial haemorrhage; 3) Patients with massive intraventricular haemorrhage who required external ventricular drainage; 4) Patients with systemic illness; 4) Haematoma in the brainstem or posterior fossa; 5) Comatose patients (identified as GCS 3); 5) Haemorrhage with an epicentre beyond the basal ganglia; 6) Case report/series or review articles

Types of interventions: Neuroendoscopic surgery was considered as intervention of interest and craniotomy was considered as the comparison of interest.

Types of outcome measures

Primary outcome: Postoperative mortality and haematoma evacuation rate (percentage of haematoma volume evacuated) were considered as primary outcome measures.

Secondary outcome: The secondary outcome measures included intraoperative blood loss, operative time, postoperative Glasgow Coma Scale (GCS), postoperative Glasgow Outcome Scale (GOS), modified Rankin Score (mRS) intracranial infection, re-bleeding, need for reoperation, total postoperative infection, postoperative complication and length of hospital stay. Re-bleeding was defined as the incidence of intracranial bleed post-operatively.

Search methods, study selection and data extraction

Two authors independently performed the search of electronic databases, selection of eligible studies and data extraction. A third reviewer was consulted if no agreement could be reached. The search was conducted on PUBMED, MEDLINE, EMBASE and the Cochrane Central Register of Controlled Trials (CENTRAL). The search strategy is outlined in eTable 1 and 2. The last search was performed on inspection until December 2020 which included no restriction in languages. After running the search strategy, both the titles and abstracts of the identified studies were screened

against the eligible criteria for inclusion (Figure 1). After selection of the eligible studies, a data extraction spread sheet was created and pilottested in randomly selected articles and was adjusted to match our study. The extracted data included study-related data (first author, year of publication, country of the corresponding author, journal, study design, and sample size), baseline demographic and clinical data (age, gender, type of procedure, background of hypertension, diabetes, preoperative GCS, preoperative haematoma volume, time to operation, intraoperative blood loss) and the outcome data. When the values were presented as median, range or interquartile range, a calculation formula was utilised to convert the values into mean \pm standard deviation.¹⁶

Risk of bias assessment

Two authors independently assessed the

methodological quality and risk of bias of the included articles using the Cochrane tool and the ROBINS-I for assessing the risk of bias of randomized trials and observational studies, respectively.^{17,18} The Cochrane tool assesses domains including selection bias, performance bias, detection bias, attrition bias, reporting bias and other sources of bias and, for each individual domain, classifies studies into low, unclear, and high risk of bias. Disagreements were resolved by discussion between the reviewers. If no agreement could be reached, a third author acted as an adjudicator.

Data analysis

We used the Review Manager 5.3 software for data synthesis. The odds ratio (OR) and mean difference (MD) were calculated as summary measures for dichotomous and continuous

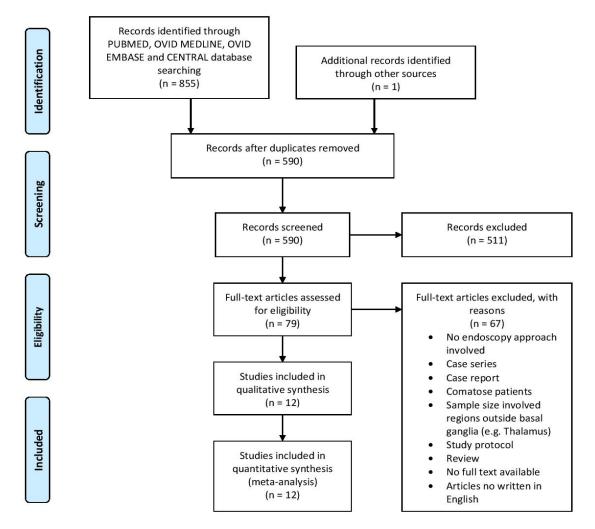


Figure 1. PRISMA flow diagram

outcome variables, respectively. An individual patient was considered as the unit of analysis. The analyses were based on intention to- treat data from the individual clinical studies. Random modelling was applied for analyses. The Cochran Q test (χ 2) was used to evaluate heterogeneity and I² was reported to quantify it.¹⁷ In terms of interpretation of I², we considered I² of less than 40% as low heterogeneity, 40-60% as moderate heterogeneity and more than 60% as substantial degree heterogeneity. Fixed-effect modelling was used for all the data analysis, if the heterogeneity was reported to be substantial, random-effect modelling was adopted. Funnel plots was constructed to evaluate their symmetry to visually assess publication bias for outcomes reported by at least 10 studies where possible. A subgroup analysis was conducted based on the age, preoperative GCS, time to operation and preoperative haematoma volume.

Sensitivity analyses

We perform sensitivity analyses for the outcomes that were reported by at least four comparative studies in order to determine the robustness of the analyses. First, the risk ratio (RR) and risk difference (RD) were calculated instead of OR for dichotomous variables. In order to determine the influence of each study on the overall effect size and heterogeneity, each study was eliminated at a time and the analysis was repeated.

RESULTS

Results of the search

The search of the 4 database (PUBMED, OVID MEDLINE, OVID EMBASE and CENTRAL) and external sources identified 855 articles. After removing the duplicates, 590 articles remained. Applying the inclusion and exclusion criteria, 79 articles were included for full text screening. Among the 79 articles, 12 articles were recruited for qualitative and quantitative analysis.¹⁹⁻³⁰ Figure 1 demonstrates the study flow chart

Study characteristics

The publication dates of all the included studies ranged from 2006 to 2020. Two RCTs were recruited and the remaining 10 studies are observational studies. The included studies enrolled a total of 1,297 patients, 622 patients were assigned to endoscopy group and 675 patients were assigned to craniotomy group. The baseline characteristics of the included studies and

included population are demonstrated in Table 1a and Table 1b, respectively.

Risk of bias in included studies

The summary of methodological quality assessment of the 12 studies is demonstrated in Table 2a and Table 2b. The overall risk of bias assessment of the included studies ranged from low risk to high risk with majority of them being in the high-risk category. The two RCTs included in our study were reported to have high risk of bias due to high risk in allocation concealment and blinding in participants and personal.^{21,22} Moderate risk in bias due to confounding was reported in four studies and high risk in three studies. High risk of bias in selection of participants into the study was detected in two studies and moderate in three studies, the rest were reported to be in low risk category. Only two studies were reported to have high risk in bias due to deviation from intended intervention.

Outcome synthesis

Primary outcomes

Eleven studies with the total sample size of 1085 patients studied the outcome of postoperative mortality rate. Our meta-analysis revealed that endoscopic approach had significantly lower postoperative mortality rate compare to craniotomy (OR: 0.35, [95% CI, 0.23 to 0.54], q<0.001). The heterogeneity of this analysis was reported to be low (I²=0%).

In comparison to haematoma evacuation rate, the endoscopy group is associated with greater evacuation rate compared to craniotomy group (studies=10, patients=926, MD: 4.95 [95% CI, 2.38 to 7.52], ϱ <0.001). The statistical heterogeneity was reported to be substantial (I²=95%).

Secondary outcomes

In terms of intraoperative blood loss, craniotomy was associated with higher volume of blood loss (studies=5, patients=559, MD: -328.47 [95% CI, -445.56 to -211.38], ϱ <0.001; I²=97%). Similar trend was reported in operative time (studies=8, patients=684, MD: -117.03 [95% CI, -154.26 to -79.80], ϱ <0.001; I²=98%), mRS (studies=3, patients=336, MD: -0.57 [95% CI, -0.96 to -0.18], ϱ =0.004; I²=29%), length of hospital stay (studies=4, patients=368, MD: -2.90 [95% CI, -3.23 to -2.58], ϱ <0.001; I²=22%), postoperative infection (studies=6, patients=113,

First Author	Year	Country	Journal	Type of study design	Total sample size	No in endoscopic group	No in Craniotomy group
Cho ²⁶	2006	China	Surgical Neurology	Randomized Controlled Trial	60	30	30
Zhu ³⁰	2012	China	Turkish Neurosurgery	Retrospective Cohort Study	58	28	30
Zhang ²⁹	2014	China	BioMed Research International	Prospective Case Controlled Study	51	21	30
Wang ²⁶	2015	Taiwan	Jornal of Chinese Medical Association	Retrospective Cohort Study	45	21	24
Feng ²²	2016	China	Turkish Neurosurgery	Randomized Controlled Trial	184	93	91
Xu ²⁸	2018	China	Journal of Neurosurgery	Retrospective Cohort Study	151	82	69
Fu ²³	2018	China	World Neurosurgery	Retrospective Cohort Study	121	61	60
Guo ²⁷	2018	China	Journal Of Neurological Surgery Part A. Central European Neurosurgery	Retrospective Cohort Study	64	27	37
Xiong ¹⁹	2019	China	World Neurosurgery	Retrospective Cohort Study	58	28	30
Guo ²⁰	2019	China	Journal Of Neuro- interventional Surgery	Retrospective Cohort Study	212	105	107
Katsuki ²⁴	2020	Japan	Scientific Reports	Retrospective Cohort Study	134	66	68
Liu ²⁵	2020	China	Frontiers in Neurology	Retrospective Cohort Study	159	60	99

Table 1a: Baseline characteristics of all the included studies

OR: 0.29 [95% CI, 0.18 to 0.46], ϱ <0.001; I²=0%) and postoperative complication (studies=9, patients=868, OR: 0.30 [95% CI, 0.16 to 0.55], ϱ <0.001; I²=64%).

In contrast, the endoscopic approach had statistically better outcomes in postoperative GCS (studies=6, patients=505, MD: 1.14 [95% CI, 0.22 to 2.06], q=0.01; I²=76%) and GOS (studies=3, patients=217, MD: 0.44 [95% CI, 0.00 to 0.88], q=0.05; I²=62%). However, no significant difference was detected in rebleeding

rate, reoperation rate and intracranial infection rate.

Subgroup analysis

Subgroup analysis was conducted with the aim to evaluate the effect of age, preoperative GCS, time to operation (hr) and preoperative haematoma volume (ml) on postoperative mortality rate, haematoma evacuation rate (%), postoperative complication rate and postoperative GCS (Table 3).

				~				
First Author	Year	Age	Male gender	Hypertension	Diabetes	Preoperative GCS	Preoperative haematoma volume (ml)	Time to operation (hr)
Cho ²⁶	2006	Endoscopy: 56.67 ± 8.66 Craniotomy: 54.22 ± 10.47	Endoscopy: 19/30 VS Craniotomy: 21/30	Endoscopy: 21/30 VS Craniotomy: 24/30	NR	Endoscopy: 9.26 ± 1.22 VS Craniotomy: 9.32 ± 1.03	Endoscopy: 55.48 ± 23.25 VS Craniotomy: 42.11 ± 18.43	Endoscopy: 112 \pm 0.77VS Craniotomy: 1.11 \pm 0.74
Zhu ³⁰	2012	Endoscopy: 60.6 ± 7.2 Craniotomy: 64.6 ± 5.0	Endoscopy: 17/28 VS Craniotomy: 15/30	Endoscopy: 21/28 VS Craniotomy: 21/30	NR	Endoscopy: 8 \pm 2 VS Craniotomy: 7 \pm 2	Endoscopy: 53.7 \pm 15.8 VS Craniotomy: 63.9 \pm 17.0	Endoscopy: 8 (median) VS Craniotomy: 6 (median)
Zhang ²⁹	2014	Endoscopy: 59.90 \pm 12.85 Craniotomy: 61.45 \pm 9.25	Endoscopy: 16/21 VS Craniotomy: 22/30	Endoscopy: 15/21 VS Craniotomy: 23/30	NR	Endoscopy: 9.19 \pm 3.76 VS Craniotomy: 8.37 \pm 2.39	Endoscopy: 58.28 ± 18.84 VS Craniotomy: 62.16 ± 15.62	Endoscopy: 9/21 within 12 hr VS Craniotomy: 10/30 within 12 hour
Wang ²⁶	2015	Endoscopy: 58.9 ± 12.97 Craniotomy: 52.9 ± 15.92	Endoscopy: 15/21 VS Craniotomy: 19/24	Endoscopy: 20/21 VS Craniotomy: 21/24	Endoscopy: 12/21 VS Craniotomy: 14/24	Endoscopy: 8.5 \pm 2.65 VS Craniotomy: 8 \pm 2.57	Endoscopy: 73.1 ± 29.11 VS Craniotomy: 59.05 ± 20.03	Endoscopy: within 6hr: 19/21 VS Craniotomy: 20/24
Feng ²²	2016	Endoscopy: 66.35±12.23 Craniotomy: 69.10±10.26	Endoscopy: 56/93 VS Craniotomy: 58/91	NR	Endoscopy: 16/93 VS Craniotomy: 11/91	NR	NR	NR
Xu ²⁸	2018	Endoscopy: 52.9 ± 12.3 Craniotomy: 53.8 ± 13.5	Endoscopy: 58/82 VS Craniotomy: 46/69	NR	NR	Endoscopy: 7.9 \pm 2.2 VS Craniotomy: 7.8 \pm 3.1	Endoscopy: 55.2 ± 28.4 VS Craniotomy: 55.9 ± 27.6	Endoscopy: 15.6 ± 14.9 VS Craniotomy: 13.7 ± 11.6
Fu ²³	2018	Endoscopy: 61.6 ± 9.2 Craniotomy: 63.2 ± 9.4	Endoscopy: 30/61 VS Craniotomy: 28/60	Endoscopy: 48/61 VS Craniotomy: 46/60	Endoscopy: 14/61 VS Craniotomy: 12/60	Endoscopy: 8.0 ± 2.9 VS Craniotomy: 7.9 ± 2.8	Endoscopy: 49.8 ± 11.3 VS Craniotomy: 50.8 ± 12.4	Endoscopy: 9.1 \pm 3.1 VS Craniotomy: 9.5 \pm 3.2

Neurology Asia

Table 1b: Baseline characteristics of all the included studies (con't)

Guo ²⁷	2018	Endoscopy: 59.8 ± 12.9 Craniotomy: 56.9 ± 13.1	Endoscopy: 14/27 VS Craniotomy: 21/37	Endoscopy: 22/27 VS Craniotomy: 30/37	NR	Endoscopy: 8.2 ± 3.4 VS Craniotomy: 7.5 ± 2.9	Endoscopy: 50.4 ± 20.5 VS Craniotomy: 56.5 ± 22.9	Endoscopy: 5.2 ± 6.4 VS Craniotomy: 5.4 ± 4.9
Xiong ¹⁹	2019	Endoscopy: 61.89 ± 10.32 Craniotomy: 60.37 ± 11.42	Endoscopy: 16/28 VS Craniotomy: 16/30	NR	NR	Endoscopy: 8.39 ± 2.38 VS Craniotomy: 7.93 ± 2.18	Endoscopy: 52.36 ± 11.58 VS Craniotomy: 57.98 ± 15.25	NR
Guo ²⁰	2019	Endoscopy: 70/105 less than 60 year old Craniotomy: 65/107 less than 60 year old	Endoscopy: 64/105 VS Craniotomy: 71/107	Endoscopy: 88/105 VS Craniotomy: 81/107	Endoscopy: 7/105 VS Craniotomy: 4/107	NR	Endoscopy: ≥40–<80: 69/105 VS Craniotomy: 50/107	Endoscopy: 17/105 less than 8hr VS Craniotomy: 35/107 less than 8 hour
Katsuki ²⁴	2020	Endoscopy: 74.25 ± 3.62 Craniotomy: 73.25 ± 4.45	Endoscopy: 36/66 VS Craniotomy: 42/68	Endoscopy: 58/66 VS Craniotomy: 54/68	Endoscopy: 16/66 VS Craniotomy: 6/68	Endoscopy: 10.33 ± 3.79 VS Craniotomy: 9.67 ± 4.54	Endoscopy: 102.33 ± 55.33 VS Craniotomy: 128 ± 74.23	NR
Liu ²⁵	2020	Endoscopy: ≥60 :21/60 Craniotomy: ≥60: 42/99	Endoscopy: 39/60 VS Craniotomy: 61/99	Endoscopy: 51/60 VS Craniotomy: 79/99	Endoscopy: 5/60 VS Craniotomy: 5/99	Endoscopy: GCS: 6-8: 47/90 VS Craniotomy: GCS:6-8: 31/99	Endoscopy: ≥80: 20/60 VS Craniotomy: 56/99	Endoscopy: >8(hr): 48/60 VS Craniotomy: 57/99

porte
Re
ot]
Z

s due to Bias in sele ounding of particip into the st into the st Risk Low Risk erate Moderate Ri Risk High Risk erate Low Risk erate Low Risk erate Low Risk Risk Low Risk Risk Low Risk Risk Low Risk Risk Low Risk at of Bias summary of concedment		Pre-Intervention	vention	At Intervention		Post-Inte	Post-Intervention		Overall risk of bias	
Zhu ³⁰ 2012Low RiskHigh RiskZhang ²⁶ 2014Low RiskLow RiskWang ²⁶ 2015ModerateModerate RiskWang ²⁶ 2018High RiskModerate RiskXu ²⁸ 2018High RiskModerate RiskFu ²³ 2018ModerateLow RiskGuo ²⁷ 2018ModerateLow RiskKiong ¹⁹ 2019ModerateLow RiskCuo ²⁰ 2019ModerateLow RiskKatsuki ²⁴ 2020High RiskLow RiskLiu ²⁵ 2020High RiskLow RiskLiu ²⁵ 2020High RiskLow RiskStudySequenceMocerationBias summary of all theStudySequenceStudySequenceStudySequenceSequenceAllocationStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceSequenceStudySequenceStudySequenceStudySequenceStudySequenceSequenceSummary of all theStudySequence <td c<="" th=""><th></th><th></th><th>ias in selection of participants into the study</th><th>Bias in classification of intervention</th><th>Bias due to deviations from intended interventions</th><th>Bias due to missing data</th><th>Bias in measurement of outcomes</th><th>Bias in selection of the reported result</th><th></th></td>	<th></th> <th></th> <th>ias in selection of participants into the study</th> <th>Bias in classification of intervention</th> <th>Bias due to deviations from intended interventions</th> <th>Bias due to missing data</th> <th>Bias in measurement of outcomes</th> <th>Bias in selection of the reported result</th> <th></th>			ias in selection of participants into the study	Bias in classification of intervention	Bias due to deviations from intended interventions	Bias due to missing data	Bias in measurement of outcomes	Bias in selection of the reported result	
ZhangZ014Low RiskLow RiskWang2015ModerateModerate RiskYu ²⁸ 2018Low RiskModerate RiskFu ²³ 2018High RiskHigh RiskGuo ²⁷ 2018ModerateLow RiskStiong ¹⁹ 2019ModerateLow RiskKiong ¹⁹ 2019ModerateLow RiskKiong ¹⁹ 2019ModerateLow RiskKiskLow RiskLow RiskLow RiskStudy2020High RiskLow RiskStudyStudySequenceModerationStudySequenceModerationBlindiStudySequenceAllocationBlindiStudySequenceModerationConcealmentStudySequenceModerationModeration			igh Risk	Low Risk	Low Risk	Low Risk	Low Risk	Low Risk	High Risk	
Wang262015ModerateModerate Risk RiskXu ²⁸ 2018Low RiskModerate RiskFu ²³ 2018High RiskHigh RiskGuo ²⁷ 2018ModerateLow RiskXiong ¹⁹ 2019ModerateLow RiskGuo ²⁰ 2019ModerateLow RiskKiong ¹⁹ 2019ModerateLow RiskLiu ²⁵ 2010High RiskLow RiskKatsuki ²⁴ 2020High RiskLow RiskLiu ²⁵ 2020High RiskLow RiskLiu ²⁵ 2020High RiskLow RiskSudySequenceAllocationBlindiStudySequenceStudySequenceAllocationconcealment			ow Risk	Low Risk	Low Risk	Low Risk	Unclear	Low Risk	Low Risk	
Xu ²⁸ 2018Low RiskModerate RiskFu ²³ 2018High RiskHigh RiskGuo ²⁷ 2018ModerateLow RiskXiong ¹⁹ 2019ModerateLow RiskXiong ¹⁹ 2019ModerateLow RiskKisk2019ModerateLow RiskGuo ²⁰ 2019ModerateLow RiskLiu ²¹ 2019ModerateLow RiskKatsuki ²⁴ 2020High RiskLow RiskLiu ²⁵ 2020High RiskLow RiskLiu ²⁵ 2020High RiskLow RiskStudySequenceAllocationBlindiStudySequenceAllocationBlindiRatsukiSequenceAllocationBlindiStudySequenceAllocationBlindi				Low Risk	Low Risk	Low Risk	Low Risk	Low Risk	Moderate Risk	
Fu^{23}2018High RiskHigh Risk Guo^{27} 2018ModerateLow Risk $Kiong^{19}$ 2019ModerateLow Risk $Xiong^{19}$ 2019ModerateLow Risk Guo^{20} 2019ModerateLow Risk Guo^{20} 2019ModerateLow Risk Liu^{24} 2020High RiskLow RiskLiu ²⁵ 2020High RiskLow RiskLiu ²⁵ 2020High RiskLow RiskStudySequenceAllocationBlindiStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceSequenceAllocationStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceStudySequenceSequenceSequenceStudy <t< td=""><td></td><td></td><td>loderate Risk</td><td>Low Risk</td><td>Low Risk</td><td>Low Risk</td><td>Low Risk</td><td>Low Risk</td><td>Moderate Risk</td></t<>			loderate Risk	Low Risk	Low Risk	Low Risk	Low Risk	Low Risk	Moderate Risk	
Guo ²⁷ 2018 Moderate Low Risk Xiong ¹⁹ 2019 Moderate Low Risk Kisk Low Risk Moderate Kisk Guo ²⁰ 2019 Moderate Low Risk Katsuki ²⁴ 2020 High Risk Low Risk Liu ²⁵ 2020 High Risk Low Risk Liu ²⁵ 2020 High Risk Low Risk Study Sequence Allocation Blindi			igh Risk	Low Risk	High Risk	Low Risk	Low Risk	Low Risk	High Risk	
Xiong192019ModerateLow RiskRiskRiskModerateRiskGuo202019ModerateModerateKatsuki242020High RiskLow RiskLiu252020High RiskLow RiskLiu252020High RiskLow RiskLiu252020High RiskLow RiskStudySequenceAllocationBlindiStudySequenceStudySequenceStudySequenceSequenceAllocationStudySequenceSequenceAllocationStudySequenceStudySequenceSequenceAllocationStudySequenceStudySequenceStudySequenceSequenceAllocationSequence <td colsp<="" td=""><td></td><td></td><td>ow Risk</td><td>Low Risk</td><td>Low Risk</td><td>Low Risk</td><td>Low Risk</td><td>Low Risk</td><td>Moderate Risk</td></td>	<td></td> <td></td> <td>ow Risk</td> <td>Low Risk</td> <td>Low Risk</td> <td>Low Risk</td> <td>Low Risk</td> <td>Low Risk</td> <td>Moderate Risk</td>			ow Risk	Low Risk	Low Risk	Low Risk	Low Risk	Low Risk	Moderate Risk
Guo ²⁰ 2019 Moderate Moderate Risk Risk Risk Moderate Risk Katsuki ²⁴ 2020 High Risk Low Risk Liu ²⁵ 2020 High Risk Low Risk Itiu ²⁵ 2020 High Risk Low Risk Itiu ²⁵ 2020 High Risk Low Risk Itiu ²⁵ 2020 High Risk Itow Risk Itiu ²⁵ 2020 High Risk Itow Risk Study Sequence Allocation Blindi Study Sequence Allocation Blindi			ow Risk	Low Risk	Low Risk	Low Risk	Low Risk	Low Risk	Moderate Risk	
Katsuki ²⁴ 2020 High Risk Low Risk Liu ²⁵ 2020 High Risk Low Risk lable 2b: The Cochrane Risk of Bias summary of all the Study Sequence Allocation			foderate Risk	Low Risk	Low Risk	Low Risk	Low Risk	Low Risk	Moderate Risk	
Liu ²⁵ 2020 High Risk Low Risk [able 2b: The Cochrane Risk of Bias summary of all the Study Sequence Allocation Study Sequence Allocation			ow Risk	Low Risk	High Risk	Low Risk	Low Risk	Low Risk	High Risk	
Iable 2b: The Cochrane Risk of Bias summary of all the Study Study Sequence Allocation Blindi generation			ow Risk	Low Risk	Low Risk	Low Risk	Low Risk	Low Risk	High Risk	
Sequence Allocation generation concealment	ochrane Risk	ζ of Bias su	ımmary of all the	e included random	uised clinical trials					
Sequence Allocation generation concealment				Cochrane F	Cochrane Risk of Bias Tool				Overall	
	Sequence generation	Alloca conceal		Blinding of Blin participants and of ou personnel assess	Blinding Incomplete of outcome data assessment		Selective outcome reporting	Other sources of bias		

52

Table 2a: ROBINS-I Risk of Bias summary of all the included observationall studies

High Risk High Risk

Low Risk Low Risk

Low Risk Low Risk

Low Risk Low Risk

Unclear Risk Unclear Risk

High Risk High Risk

High Risk High Risk

Low Low

Feng 2016²² Cho 2006²⁶

			Mortality	ty			Haematoma Evacuation Rate	na Rate			Complication	tion			Postoperative GCS	/e
Subgroup	ME	Z	OR (95% CI)	Ь	ME	z	MD (95% CI)	Р	ME	Z	OR (95% CI)	Ч	ME	z	MD (95% CI)	Р
Age																
≤60	FME	4	0.44 (0.20, 0.99)	0.05	RME	4	7.14 (2.70, 11.58)	0.002	RME	e	0.63 (0.29, 1.37)	0.24	RME	4	1.20 (-0.20, 2.59)	0.09
>60	FME	2	0.32 (0.20, 0.53)	<0.00001	RME	6	3.33 (0.99, 5.68)	0.005	RME	5	0.23 (0.10, 0.52)	0.0004	RME	0	1.12 (0.30, 1.94)	0.007
Preoperative GCS																
8 VI	FME	Ś	0.28 (0.17, 0.49)	<0.00001	RME	Ś	6.29 (2.24, 10.34)	0.002	FME	ε	0.31 (0.18, 0.56)	<0.0001	RME	10	1.77 (-1.08, 4.61)	0.22
>8	FME	9	0.40 (0.16, 0.99)	0.05	RME	Ś	3.53 (0.73, 6.33)	0.01	FME	4	0.52 (0.30, 0.87)	0.01	RME	4	0.71 (0.21, 1.22)	0.006
Time To Operation (hr)																
∞ VI	FME	ŝ	0.41 (0.12, 1.43)	0.16	RME	ς.	8.72 (4.17, 13.27)	0.0002 FME	FME	ς.	0.59 (0.28, 1.27)	0.18	RME	e	0.43 (-0.14, 1.00)	0.14
~	FME	Ś	0.28 (0.16, 0.48)	<0.00001	RME	Ś	6.00 (2.16, 9.84)	0.002	FME	e	0.24 (0.13, 0.44)	<0.00001	RME	0	2.00 (-0.47, 4.46)	0.11
Preoperative Haematoma Volume (ml)																
≤60	FME	5	0.35 (0.17, 0.74)	0.006	RME	Ś	4.50 (-0.94, 9.94)	0.11	FME	4	0.30 (0.17, 0.52)	<0.0001	RME	б	1.26 (-0.58, 3.11)	0.18
>60	FME	5	0.29 (0.16, 0.52)	<0.0001	RME	4	5.21 (-2.11, 12.53)	0.16	FME	3	0.56 (0.33, 0.97)	0.04	RME	3	1.09 (0.38, 1.79)	0.002

Figure 2: Summary of findings for primary and secondary outcomes:

(a) Mortality

	Neuroendos	сору	Craniot	omy		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Cho 2006	0	30	4	30	5.7%	0.10 [0.00, 1.88]	
Feng 2016	6	93	8	91	9.8%	0.72 [0.24, 2.15]	
Fu 2018	1	61	3	60	3.8%	0.32 [0.03, 3.13]	
Guo 2018	1	27	4	37	4.2%	0.32 [0.03, 3.01]	
Katsuki 2020	2	66	4	68	4.9%	0.50 [0.09, 2.83]	
Liu 2020	12	60	54	99	42.1%	0.21 [0.10, 0.44]	
Wang 2015	2	21	1	24	1.1%	2.42 [0.20, 28.80]	
Xiong 2019	2	28	5	30	5.8%	0.38 [0.07, 2.17]	
Xu 2018	6	82	10	69	13.0%	0.47 [0.16, 1.35]	
Zhang 2014	0	21	3	30	3.7%	0.18 [0.01, 3.73]	
Zhu 2012	2	28	5	30	5.8%	0.38 [0.07, 2.17]	
Total (95% CI)		517		568	100.0%	0.35 [0.23, 0.54]	•
Total events	34		101				
Heterogeneity: Chi ² =	7.19, df = 10 (P = 0.71); I² = 0%				0.005 0.1 1 10 200
Test for overall effect:	Z=4.84 (P <	0.00001)				0.005 0.1 1 10 200 Craniotomy Neuroendoscopy

(b) Haematoma evacuation rate (%)

	Neuro	endosc	ору	Cra	niotom	у		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Cho 2006	87	8	30	75	2	30	11.1%	12.00 [9.05, 14.95]	
Feng 2016	83.52	27.51	93	77.25	13.44	91	7.4%	6.27 [0.03, 12.51]	
Fu 2018	90.8	7.9	61	87.3	8.5	60	11.2%	3.50 [0.57, 6.43]	_
Guo 2018	78.4	19.6	27	82.5	17.4	37	4.8%	-4.10 [-13.38, 5.18]	
Katsuki 2020	95	3.4	66	96.5	2.1	68	12.8%	-1.50 [-2.46, -0.54]	-
Wang 2015	86.25	8.7	21	80.5	12.3	24	7.5%	5.75 [-0.42, 11.92]	
Xiong 2019	0.93	0.05	28	0.88	0.13	30	13.1%	0.05 [-0.00, 0.10]	+
Xu 2018	90.5	6.5	82	82.3	8.6	69	11.7%	8.20 [5.73, 10.67]	
Zhang 2014	90.11	7.27	21	85.37	6.78	30	10.0%	4.74 [0.80, 8.68]	
Zhu 2012	93.05	3.9	28	80.75	9.1	30	10.4%	12.30 [8.74, 15.86]	
Total (95% CI)			457			469	100.0%	4.95 [2.38, 7.52]	•
Heterogeneity: Tau ² :	= 13.14; (Chi² = 17	⁷ 8.85, d	f=9(P	< 0.000	01); I ^z =	95%		
Test for overall effect	: Z = 3.78	(P = 0.0	0002)						-10 -5 Ó Ś 10 Craniotomy Neuroendoscopy

(c) Intraoperative blood loss (ml)

	Neuro	endosc	ору	Cra	aniotomy	,		Mean Difference	Mean Di	fference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Rando	m, 95% Cl
Feng 2016	96	39	93	256	129	91	23.0%	-160.00 [-187.66, -132.34]	+	
Fu 2018	67.1	29.2	61	189.3	72.1	60	23.2%	-122.20 [-141.86, -102.54]	•	
Wang 2015	167.5	66.2	21	790	488	24	14.0%	-622.50 [-819.78, -425.22]		
Xiong 2019	75.36	45.56	28	462.67	120.08	30	22.5%	-387.31 [-433.47, -341.15]	+	
Xu 2018	91.4	93.1	82	605.6	602.3	69	17.3%	-514.20 [-657.74, -370.66]		
Total (95% CI)			285			274	100.0%	-328.47 [-445.56, -211.38]	•	
Heterogeneity: Tau ² = Test for overall effect				0, df= 4	(P < 0.00	001); I ^a	= 97%		-500 -250 Craniotomy	D 250 500 Neuroendoscopy

(d) Operative time (minutes)

	Neuro	endosc	ору	Cra	niotomy	/		Mean Difference	Mean Di	fference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Rando	m, 95% Cl
Cho 2006	157	47.42	30	229.96	50.57	30	12.3%	-72.96 [-97.77, -48.15]		
Fu 2018	87.2	28.9	61	165.4	45.2	60	12.8%	-78.20 [-91.74, -64.66]	+	
Guo 2018	79.4	9.2	27	225.9	61.2	37	12.6%	-146.50 [-166.52, -126.48]		
Katsuki 2020	63	5.5	66	109	14.8	68	13.0%	-46.00 [-49.76, -42.24]		
Wang 2015	130	26.5	21	260	87.3	24	11.6%	-130.00 [-166.72, -93.28]		
Xiong 2019	95.4	18	28	250.2	51.6	30	12.6%	-154.80 [-174.43, -135.17]		
Xu 2018	96	42	82	312	108	69	12.2%	-216.00 [-243.06, -188.94]		
Zhang 2014	76.5	14.92	21	175.15	26.13	30	12.9%	-98.65 [-109.97, -87.33]	+	
Total (95% CI)			336			348	100.0%	-117.03 [-154.26, -79.80]	•	
Heterogeneity: Tau ² =	= 2766.00); Chi ² =	407.94	. df = 7 (F	o < 0.00	001); I ^z	= 98%			
Test for overall effect									-200 -100 Craniotomy) 100 200 Neuroendoscopy

(e) Postoperative GCS

			Mean	SD	Total	Weight	IV. Random, 95% Cl	IV, Random, 95% Cl
14.47	0.96				30	19.9%	,	
9	2.46	27	8.7	2.6	37	16.0%	0.30 [-0.95, 1.55]	
13	1.5	66	11.7	3.8	68	18.1%	1.30 [0.33, 2.27]	
11.3	1.9	21	10.3	2.8	24	15.0%	1.00 [-0.38, 2.38]	+
11.5	2.9	82	8.3	3.8	69	17.2%	3.20 [2.11, 4.29]	
9.71	2.64	21	9.03	2.85	30	14.0%	0.68 [-0.84, 2.20]	
		247			258	100.0%	1.14 [0.22, 2.06]	•
0.96; Ch	i² = 20.0 (P = 0.0	30, df =	5 (P = 0	0.0010				
	Mean 14.47 9 13 11.3 11.5 9.71	Mean SD 14.47 0.96 9 2.46 13 1.5 11.3 1.9 11.5 2.9 9.71 2.64	Mean SD Total 14.47 0.96 30 9 2.46 27 13 1.5 66 11.3 1.9 21 11.5 2.9 82 9.71 2.64 21	Mean SD Total Mean 14.47 0.96 30 14.15 9 2.46 27 8.7 13 1.5 66 11.7 11.3 1.9 2.1 10.3 11.5 2.9 82 8.3 9.71 2.64 21 9.03	Mean SD Total Mean SD 14.47 0.96 30 14.15 1.78 9 2.46 27 8.7 2.6 13 1.5 66 11.7 3.8 11.3 1.9 21 10.3 2.8 11.5 2.9 82 8.3 3.8 9.71 2.64 21 9.03 2.55	Mean SD Total Mean SD Total 14.47 0.96 30 14.15 1.78 30 9 2.46 27 8.7 2.6 37 13 1.5 66 11.7 3.8 68 11.3 1.9 21 10.3 2.8 24 11.5 2.9 82 8.3 3.8 69 9.71 2.64 21 9.03 2.85 30	14.47 0.96 30 14.15 1.78 30 19.9% 9 2.46 27 8.7 2.6 37 16.0% 13 1.5 66 11.7 3.8 68 18.1% 11.3 1.9 21 10.3 2.8 24 15.0% 11.5 2.9 82 8.3 3.8 69 17.2% 9.71 2.64 21 9.03 2.85 30 14.0%	Mean SD Total Mean SD Total Weight IV, Random, 95% CI 14.47 0.96 30 14.15 1.78 30 19.9% 0.32 [-0.40, 1.04] 9 2.46 27 8.7 2.6 37 16.0% 0.30 [-0.95, 1.55] 13 1.5 66 11.7 3.8 68 18.1% 1.30 [0.33, 2.27] 11.3 1.9 21 10.3 2.8 24 15.0% 1.00 [-0.38, 2.38] 11.5 2.9 82 8.3 3.8 69 17.2% 3.20 [2.11, 4.29] 9.71 2.64 21 9.03 2.65 30 14.0% 0.68 [-0.84, 2.20]

(f) Postoperative GOS

	Neuro	endosc	ору	Cra	nioton	ıy		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Fu 2018	4.1	0.9	61	3.4	1	60	41.1%	0.70 [0.36, 1.04]	
Wang 2015	2.8	0.9	21	2.8	0.8	24	31.9%	0.00 [-0.50, 0.50]	
Zhang 2014	3.61	0.92	21	3.05	1.26	30	27.1%	0.56 [-0.04, 1.16]	
Total (95% CI)			103			114	100.0%	0.44 [0.00, 0.88]	
Heterogeneity: Tau ² = Test for overall effect			•	! (P = 0.1	07); I²:	= 62%		-	-1 -0.5 0 0.5 1 Craniotomy Neuroendoscopy

(g) Rebleeding

	Neuroendos	сору	Craniot	omy		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Cho 2006	0	30	1	30	6.2%	0.32 [0.01, 8.24]	
Fu 2018	2	61	3	60	12.3%	0.64 [0.10, 4.00]	
Guo 2018	2	27	2	37	6.5%	1.40 [0.18, 10.62]	
Katsuki 2020	4	66	6	68	23.3%	0.67 [0.18, 2.48]	
Wang 2015	2	21	1	24	3.5%	2.42 [0.20, 28.80]	
Xu 2018	2	82	6	69	26.6%	0.26 [0.05, 1.35]	
Zhang 2014	1	21	3	30	9.9%	0.45 [0.04, 4.65]	
Zhu 2012	1	28	3	30	11.7%	0.33 [0.03, 3.41]	
Total (95% CI)		336		348	100.0%	0.58 [0.30, 1.13]	•
Total events	14		25				
Heterogeneity: Chi ² =	3.35, df = 7 (F	= 0.85)	; ² = 0%				
Test for overall effect:	Z = 1.59 (P =	0.11)					0.01 0.1 1 10 100 Craniotomy Neuroendoscopy

(h) Reoperation rate

	Neuroendos	сору	Craniot	omy		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Feng 2016	6	93	3	91	17.4%	2.02 [0.49, 8.35]	
Guo 2019	4	105	9	107	52.5%	0.43 [0.13, 1.45]	
Liu 2020	4	60	7	99	30.2%	0.94 [0.26, 3.35]	
Total (95% CI)		258		297	100.0%	0.86 [0.42, 1.76]	
Total events	14		19				
Heterogeneity: Chi ² =	= 2.67, df = 2 (F	P = 0.26)	; I² = 25%				
Test for overall effect	: Z = 0.41 (P =	0.68)					Craniotomy Neuroendoscopy

(i) Intracranial infection

	Neuroendos	сору	Craniot	omy		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Cho 2006	0	30	1	30	24.7%	0.32 [0.01, 8.24]	
Fu 2018	2	61	3	60	49.1%	0.64 [0.10, 4.00]	
Guo 2018	2	27	2	37	26.2%	1.40 [0.18, 10.62]	
Total (95% CI)		118		127	100.0%	0.76 [0.22, 2.59]	
Total events	4		6				
Heterogeneity: Chi ² =	: 0.65, df = 2 (F	^o = 0.72)	; I z = 0%				
Test for overall effect	Z = 0.43 (P =	0.66)					0.01 0.1 1 10 100 Craniotomy Neuroendoscopy

(j) mRS

	Neuro	endosc	ору	Cra	nioton	ıy		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
Katsuki 2020	3.7	2.3	66	4	1.5	68	35.0%	-0.30 [-0.96, 0.36]	
Xu 2018	3.2	1.5	82	4.1	1.9	69	49.7%	-0.90 [-1.45, -0.35]	
Zhang 2014	2.85	1.88	21	2.96	1.65	30	15.3%	-0.11 [-1.11, 0.89]	
Total (95% CI)			169			167	100.0%	-0.57 [-0.96, -0.18]	◆
Total (95% Cl) 169 167 Heterogeneity: Chi ² = 2.83, df = 2 (P = 0.24); I ² = 29% Test for overall effect: Z = 2.86 (P = 0.004)									-2 -1 0 1 2 Craniotomy Neuroendoscopy

(k) Length of hospital stay (days)

	Neuro	endosc	ору	Cra	niotom	y		Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI	
Cho 2006	37.18	25.15	30	48.16	25.75	30	0.1%	-10.98 [-23.86, 1.90]		
Guo 2018	22.7	15.2	27	21.5	14.4	37	0.2%	1.20 [-6.18, 8.58]	<u> </u>	
Liu 2020	12.52	0.8	48	15.45	0.81	45	97.9%	-2.93 [-3.26, -2.60]		
Xu 2018	11.6	6.9	82	13.2	7.9	69	1.8%	-1.60 [-3.99, 0.79]		
Total (95% CI)			187			181	100.0%	-2.90 [-3.23, -2.58]	•	
Heterogeneity: Chi² = Test for overall effect									-20 -10 0 10 Craniotomy Neuroendoscopy	20

(l) Postoperative infection

	Neuroendos	всору	Craniot	omy		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Zhu 2012	6	28	15	30	16.3%	0.27 [0.09, 0.86]	
Zhang 2014	2	21	9	30	9.6%	0.25 [0.05, 1.28]	
Guo 2018	3	27	6	37	6.5%	0.65 [0.15, 2.85]	
Fu 2018	5	61	14	60	18.6%	0.29 [0.10, 0.88]	
Feng 2016	14	93	38	91	46.8%	0.25 [0.12, 0.50]	
Cho 2006	0	30	1	30	2.1%	0.32 [0.01, 8.24]	
Total (95% CI)		260		278	100.0%	0.29 [0.18, 0.46]	•
Total events	30		83				
Heterogeneity: Chi ² =	: 1.37, df = 5 (F	^o = 0.93)	; I² = 0%				
Test for overall effect	Z= 5.21 (P <	0.00001)				Craniotomy Neuroendoscopy

(m) Postoperative complication

	Neuroendo	scopy	Craniot	omy		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Cho 2006	1	30	5	30	5.4%	0.17 [0.02, 1.58]	
Feng 2016	31	93	78	91	14.8%	0.08 [0.04, 0.17]	_ -
Fu 2018	11	61	27	60	14.0%	0.27 [0.12, 0.62]	_
Guo 2018	6	27	12	37	11.4%	0.60 [0.19, 1.86]	
Katsuki 2020	23	66	31	68	15.1%	0.64 [0.32, 1.28]	
Wang 2015	7	21	8	24	10.6%	1.00 [0.29, 3.46]	
Xu 2018	2	82	6	69	8.0%	0.26 [0.05, 1.35]	
Zhang 2014	3	21	14	30	9.3%	0.19 [0.05, 0.79]	
Zhu 2012	7	28	18	30	11.5%	0.22 [0.07, 0.68]	
Total (95% CI)		429		439	100.0%	0.30 [0.16, 0.55]	◆
Total events	91		199				_
Heterogeneity: Tau ² = Test for overall effect:			= 8 (P = 0	0.004); i	≈ =64%		0.01 0.1 1 10 100 Craniotomy Neuroendoscopy

The analysis demonstrated that age, preoperative GCS and preoperative haematoma volume did not have significant effect on the postoperative mortality rate. Similar trend was noted in haematoma evacuation rate when the variable of age, preoperative GCS, preoperative haematoma and time to operation were considered. As for postoperative complication, the preoperative GCS and preoperative haematoma volume did not affect much on this outcome. In terms of postoperative GCS, time to operation demonstrated no significant effect on it.

In the outcome of postoperative mortality rate, our analysis showed that the endoscopic approach is significantly associated with better mortality rate compared to craniotomy. Our pooled analysis demonstrated age and time to operation had significant impact on the outcome of postoperative complication. It is reported that endoscopic approach had significantly lower complication rate when the patients age were more than 60 years old and were operated after 8 hours since the onset. As for postoperative GCS, the patients in the craniotomy group had statistically significant lower score if the preoperative GCS was more than 8 and the haematoma volume was more than 60 ml.

Publication bias

Assessment of publication bias was conducted on postoperative mortality rate and haematoma evacuation rate (Figure 3). The funnel plot analysis showed that symmetrical distribution was achieved on postoperative mortality rate, indicating low publication bias. However, asymmetrical distribution was reported in haematoma evacuation, indicating high risk of publication bias.

Sensitivity analyses

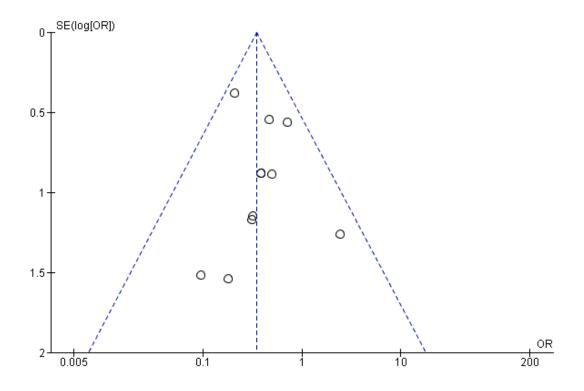
The first set of analysis showed that the overall effect remained the same when risk ratios, odd ratios and risk difference were calculated independently. Eliminating one study at a time did not have significant effect except postoperative GCS (MD: 1.10; 95% CI -0.05 to 2.26; p=0.06) and length of hospital stay (MD: -1.63; 95% CI -3.86 to 0.61; p=0.15) where the overall effect became insignificant when Katsuki 2020 and Liu 2020 were removed respectively.^{24,25}

DISCUSSION

We performed a systemic review and meta-analysis

to compare the outcomes of neuroendoscopy versus craniotomy in the management of basal ganglia haemorrhage. Analysis of the results from twelve studies, enrolling 566 patients, showed that craniotomy was associated with higher risk of postoperative mortality, longer operative time, higher intraoperative blood loss, reduced postoperative GCS, reduced postoperative GOS, higher mRS, longer length of hospital stay, higher postoperative infection rate and higher postoperative complication rate compared with endoscopic approach. There was no difference between the two techniques in terms of intracranial infection, re-bleeding and need for reoperation.

Haematoma volume


A systematic review by Zhou et al. suggested neuroendoscopy was preferable in managing haematomas with a volume ranging from 25 to 40ml.³² Among the studies recruited for our analysis, the preoperative mean haematoma volume ranged between 42ml and 128ml. Although the majority of studies recruited had a haematoma volume of more than 40ml, our results revealed that neuroendoscopy achieved a more favourable mortality rate than craniotomy. Fu et al. showed no significant difference in mortality rate in patients aged over 70 years presenting with basal ganglia haemorrhage, indicating that mortality rate is higher in older patients.²³ Some studies showed no significant relationship between old age and mortality but this finding has been seen in intracerebral bleeding but not specifically in basal ganglia haemorrhage.³⁴⁻³⁶ Furthermore, neuroendoscopic procedures can be performed under local anaesthesia which increases the safety and feasibility for patients with major comorbidity.²⁶ Zhang et al. revealed that it is easier to determine the bleeding point and achieve haemostasis with the endoscopic approach.29

Evaluation rate

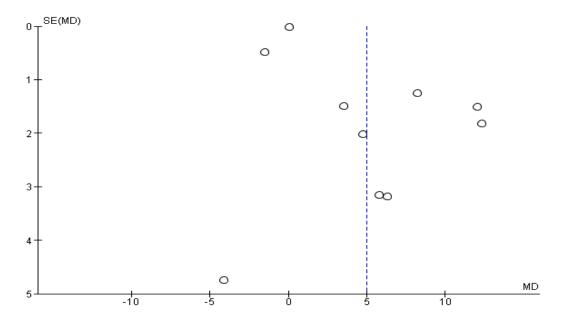

Intracerebral haemorrhage results in a rapid rise of intracranial pressure and this effect could result in cerebral ischaemia.³⁷ Previous studies reported higher evacuation rates of haematoma using neuroendoscopy and our analysis supported their findings. Neuroendoscopic approach generally causes less trauma to the brain tissue and offers a clear and direct vision of the haematoma, enabling the surgeon to directly evacuate the haematoma in a much shorter time without increasing the amount of haemorrhage.³⁸ The effect of raised intracranial

Figure 3. Funnel plot

(a) Postoperative Mortality

(b) Haematoma evacuation rate

pressure caused by the haematoma shifts the surrounding brain tissue, but the endoscopic channel provides negative pressure compared with the brain tissue and haematoma.³⁹ Hence, the shifted brain tissue causes the haematoma to move into the visible channel. As the result of the "pulling effect" without the usage of spatula to manipulate the brain tissue, it minimised the unnecessary damage to the brain tissue without compromising the clearance rate.

Intraoperative time and blood loss

The analysis results from our review demonstrated positive impacts of neuroendoscopy in achieving shorter intraoperative time and blood loss. Our results are consistent with the available evidence.^{31,38,40} This could be due to the advantage of the endoscopic procedure which by its very nature of minimal invasion of the brain tissue, causes less damage and shortens the operative time.38 Another benefit of neuroendoscopic technique is that it has high manipulation proficiency with high definition view which enables the surgeon to quickly reduce the mass effect from the basal ganglia haemorrhage.³⁸ On the other hand, craniotomy has been demonstrated to be effective in removing large haematomas and relieving acutely raised intracranial pressure.⁴¹

On the contrary, the haematoma pressure gradient is difficult to establish in craniotomy due to formation of cortical fistula. This causes the evacuation of haematoma to become more difficult and required the spatula to pull the brain tissue, which increases the operating time, lower haematoma evacuation rate and damaging more brain tissue. Traditional haematoma evacuation in endoscopic approach was conducted with the guidance of a syringe or trocar.42 To date, many advanced cannula systems are available with the aim to reduce damage and improve the access to the haematoma.^{43- $\overline{45}$} This technique is helpful in distributing the intracranial pressure evenly, thus reducing stretching and the incidence of brain edema. Moreover, after evacuating the haematoma, the fistula and stoma will retract to a diameter of less than 1 cm, causing less damage to the brain tissue.³⁸ Due to the minimal invasive approach and multi-angle observation technique, which offers a good protection to brain tissue, and the advanced cannula system adapted in the endoscopic technique, it significantly reduces the postoperative infection and complication which is consistent.²² Furthermore, the level of consciousness at presentation and anaesthetic duration are major contributing factors.^{22,29}

Rebleed

However, the postoperative rebleeding rate was reported to be insignificant in our study, this finding is similar with the meta-analysis conducted by Sun and colleagues.³¹ It was proposed that the aetiology of rebleeding is mainly due to the uncontrolled hypertension.²⁶

Neurological outcome

Cho et al. demonstrated better neurological function outcomes and less tissue damage.²¹ The mRS measures the global disability and is commonly used in evaluating stroke recovery.46,47 Its reliability was assessed by Jamie et al and was reported to have strong test-re-test reliability (κ =0.81 to 0.95).⁴⁸ Our study analysed the outcome of mRS in 3 studies and revealed that endoscopy group had statistically significant lower mRS score. This finding was consistent with the current available evidence.28 Furthermore, similar trend in postoperative GCS and GOS, indicating that patients in the endoscopy group achieved better recovery rate compared to the patients in the craniotomy group. These findings may be attributed to the nature of minimally invasiveness in the endoscopic approach and the low complication rate achieved.28

In the subgroup analysis, it was demonstrated that neuroendoscopic approach is a better choice in achieving low postoperative mortality rate regardless of age, preoperative GCS and preoperative haematoma volume. Indicating that, age, preoperative GCS and preoperative haematoma volume are not the influencing factors affecting the surgical approach.

Time to surgery

Endoscopy appeared to have better outcome than craniotomy for patients who were presented to theatre later than 8 hours. Similar findings were reported in haematoma evacuation rate, showing that age, preoperative GCS, time to operation and preoperative haematoma volume have no obvious correlation with the surgical approach. One of the explanations may be that haematoma evacuation is easier within 24 hours as the haematoma is still partially liquified.⁴⁹ However, the subgroup analysis suggests that neuroendoscopy is a better choice regardless of the preoperative haematoma volume as reported by previous literature.⁵⁰ In terms of postoperative complication, our subgroup analysis revealed that the endoscopy is better for patients who are more than 60 years old or presented to theatre later than 8 hours. Lastly, postoperative GCS is not dependent on the time to operation.

Based on the best available evidence presented in this study neuroendoscopy has a better outcome profile compared to craniotomy. In this study, we used a systematic approach to provide summary of best available comparative evidence and to assess the risk of bias of relevant studies. However, the outcomes of this study possessed some limitations. Firstly, the timeline of the postoperative measures were not consistent in all the 12 studies. Most of the included studies had non-randomised design which are subject to selection and confounding bias. Moreover, some of the included studies had retrospective design that increases the likelihood of indication bias. The between study heterogeneity was low for all the outcomes except intraoperative blood loss, operative time, haematoma evacuation rate, postoperative GCS, postoperative GOS and postoperative complication where the heterogeneity was substantial. The quality of the available evidence was low due to the high risk of bias of the included studies.

As for the inclusion criteria in this study, it was reported that medical treatment is effective in managing haematoma less than 25 ml and GCS of more than or equal to 14. Furthermore, previous review of RCTs suggested endoscopic technique to be indicated for haematoma volume between 25 ml to 40 ml.³² Hence, we proposed our study to include patients with brain haematoma of more than 25 ml and GCS in the range of 4 to 14.⁵¹⁻⁵³

In conclusion, the best available evidence suggest that endoscopic approach may be associated with lower risk of postoperative mortality, better haematoma evacuation rate, lesser intraoperative blood loss, shorter operative time, higher postoperative GCS and GOS, lower mRS, lower postoperative infection and complication compared with craniotomy in management of BGH. The available evidence is derived from observational studies and is subject to bias by indication. There is a need for high quality randomised controlled trials for definite conclusions.

ACKNOWLEDGEMENT

The corresponding author would like to sincerely thank Shahab Hajibandeh for the guidance.

DISCLOSURE

Financial support: None

Conflict of interest: None

REFERENCES

- Bhatia K, Hepburn M, Ziu E, Siddiq F, Qureshi AI. Modern approaches to evacuating intracerebral hemorrhage. *Curr Cardiol Rep* 2018;20(12):132. doi:10.1007/s11886-018-1078-4.
- Krishnamurthi RV, Feigin VL, Forouzanfar MH, et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health 2013;1(5):e259-e281. doi:10.1016/ S2214-109X(13)70089-5.
- Balami JS, Buchan AM. Complications of intracerebral haemorrhage. *Lancet Neurol* 2012;11(1):101-118. doi:10.1016/S1474-4422(11)70264-2.
- Huang FP, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT. Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg. 2002;96(2):287-93. doi:10.3171/jns.2002.96.2.0287.
- Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage. *Stroke* 1999;30(6):1167-73. doi:10.1161/01.str.30.6.1167.
- 6. Gebel JM Jr, Jauch EC, Brott TG, *et al.* Natural history of perihematomal edema in patients with hyperacute spontaneous intracerebral hemorrhage. *Stroke* 2002;33(11):2631-5. doi:10.1161/01. str.0000035284.12699.84.
- Sondag L, Schreuder FHBM, Boogaarts HD, et al. Neurosurgical intervention for supratentorial intracerebral hemorrhage. Ann Neurol 2020;88(2):239-50. doi:10.1002/ana.25732.
- Mendelow AD, Gregson BA, Fernandes HM, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. *Lancet* 2005;365(9457):387-97. doi:10.1016/ S0140-6736(05)17826-X.
- Mendelow AD, Gregson BA, Rowan EN, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial [published correction appears in *Lancet* 2013;382(9890):396]. *Lancet* 2013;382(9890):397-408. doi:10.1016/S0140-6736(13)60986-1.
- Fam MD, Hanley D, Stadnik A, et al. Surgical performance in Minimally Invasive Surgery plus Recombinant Tissue Plasminogen Activator for Intracerebral Hemorrhage Evacuation Phase III Clinical Trial. *Neurosurgery* 2017;81(5):860-6. doi:10.1093/neuros/nyx123.
- Hanley DF, Awad IA, Vespa PM, Martin NA, Zuccarello M. Hemorrhagic stroke: introduction. *Stroke* 2013;44(6 Suppl 1):S65-S66. doi:10.1161/ STROKEAHA.113.000856.
- 12. Zhao XH, Zhang SZ, Feng J, Li ZZ, Ma ZL. Efficacy of neuroendoscopic surgery versus craniotomy for supratentorial hypertensive intracerebral hemorrhage: A meta-analysis of randomized controlled trials. *Brain*

Behav 2019;9(12):e01471. doi:10.1002/brb3.1471.

- Scaggiante J, Zhang X, Mocco J, Kellner CP. Minimally invasive surgery for intracerebral hemorrhage. *Stroke* 2018;49(11):2612-20. doi:10.1161/STROKEAHA.118.020688.
- Nam TM, Kim YZ. A Meta-analysis for evaluating efficacy of neuroendoscopic surgery versus craniotomy for supratentorial hypertensive intracerebral hemorrhage. J Cerebrovasc Endovasc Neurosurg 2019;21(1):11-7. doi:10.7461/jcen.2019.21.1.11.
- Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339:b2700. doi:10.1136/bmj.b2700.
- 16. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. *BMC Med Res Methodol* 2005;5:13. doi:10.1186/1471-2288-5-13.
- 17. Higgins JP, Altman DG, eds: Chapter 8. Assessing risk of bias in included studies. In: Higgins JP, Green S, eds: Cochrane handbook for systematic reviews of interventions. Version 5.0.1[updated September 2008]. Available at: http://hiv.cochrane.org/sites/hiv. cochrane.org/files/uploads/Ch08_Bias.pdf
- Sterne JAC, Hernán MA, Reeves BC, *et al.* ROBINS-I: a tool for assessing risk of bias in nonrandomized studies of interventions. *BMJ* 2016; 355; i4919; doi: 10.1136/bmj.i4919.
- Xiong JH, Han ZY, Liu BB, et al. Comparison of surgical outcomes and recovery of neurologic and linguistic functions in the dominant hemisphere after basal ganglia hematoma evacuation by craniotomy versus endoscopy. World Neurosurg 2019;129:e494-e501. doi:10.1016/j.wneu.2019.05.193.
- 20. Guo AS, Lin GS, Xie DH, et al. Effectiveness of surgical treatments for basal ganglia hemorrhage and imaging factors affecting hematoma evacuation rate by neuroendoscopic surgery. J Neurol Surg A Cent Eur Neurosurg 2020;81(2):155-62. doi:10.1055/s-0039-1698523.
- Cho DY, Chen CC, Chang CS, Lee WY, Tso M. Endoscopic surgery for spontaneous basal ganglia hemorrhage: comparing endoscopic surgery, stereotactic aspiration, and craniotomy in noncomatose patients. *Surg Neurol* 2006;65(6):547-56. doi:10.1016/j.surneu.2005.09.032.
- 22. Feng Y, He J, Liu B, Yang L, Wang Y. Endoscopeassisted keyhole technique for hypertensive cerebral hemorrhage in elderly patients: A randomized controlled study in 184 patients. *Turk Neurosurg* 2016;26(1):84-9. doi:10.5137/1019-5149.JTN.12669-14.0.
- 23. Fu C, Wang N, Chen B, et al. Surgical management of moderate basal ganglia intracerebral hemorrhage: Comparison of safety and efficacy of endoscopic surgery, minimally invasive puncture and drainage, and craniotomy. World Neurosurg 2019;122:e995-e1001. doi:10.1016/j.wneu.2018.10.192.
- 24. Katsuki M, Kakizawa Y, Nishikawa A, Yamamoto Y, Uchiyama T. Endoscopic hematoma removal of supratentorial intracerebral hemorrhage under local anesthesia reduces operative time compared to

craniotomy. *Sci Rep* 2020;10(1):10389. doi:10.1038/ s41598-020-67456-x.

- 25. Liu H, Wu X, Tan Z, *et al.* Long-term effect of endoscopic evacuation for large basal ganglia hemorrhage with GCS scores ≤ 8. *Front Neurol* 2020;11:848. doi:10.3389/fneur.2020.00848.
- Wang WH, Hung YC, Hsu SP, et al. Endoscopic hematoma evacuation in patients with spontaneous supratentorial intracerebral hemorrhage. J Chin Med Assoc 2015;78(2):101-7. doi:10.1016/j. jcma.2014.08.013.
- Guo W, Liu H, Tan Z, et al. Comparison of endoscopic evacuation, stereotactic aspiration, and craniotomy for treatment of basal ganglia hemorrhage. J Neurointerv Surg 2020;12(1):55-61. doi:10.1136/ neurintsurg-2019-014962.
- Xu X, Chen X, Li F, *et al.* Effectiveness of endoscopic surgery for supratentorial hypertensive intracerebral hemorrhage: a comparison with craniotomy [published correction appears in J Neurosurg. 2018 Feb;128(2):649]. *J Neurosurg* 2018;128(2):553-9. doi:10.3171/2016.10.JNS161589.
- 29. Zhang HZ, Li YP, Yan ZC, *et al.* Endoscopic evacuation of basal ganglia hemorrhage via keyhole approach using an adjustable cannula in comparison with craniotomy. *Biomed Res Int* 2014;2014:898762. doi:10.1155/2014/898762.
- Zhu H, Wang Z, Shi W. Keyhole endoscopic hematoma evacuation in patients. *Turk Neurosurg* 2012;22(3):294-9. doi:10.5137/1019-5149. JTN.5136-11.1.
- Sun S, Li Y, Zhang H, et al. Neuroendoscopic surgery versus craniotomy for supratentorial hypertensive intracerebral hemorrhage: A systematic review and meta-analysis. World Neurosurg 2020;134:477-88. doi:10.1016/j.wneu.2019.10.115.
- 32. Zhou X, Chen J, Li Q, *et al.* Minimally invasive surgery for spontaneous supratentorial intracerebral hemorrhage: a meta-analysis of randomized controlled trials. *Stroke* 2012;43(11):2923-30. doi:10.1161/STROKEAHA.112.667535.
- Yamashiro S, Hitoshi Y, Yoshida A, Kuratsu J. Effectiveness of endoscopic surgery for comatose patients with large supratentorial intracerebral hemorrhages. *Neurol Med Chir (Tokyo)* 2015;55(11):819-23. doi:10.2176/nmc.oa.2014-0136.
- Rådholm K, Arima H, Lindley RI, et al. Older age is a strong predictor for poor outcome in intracerebral haemorrhage: the INTERACT2 study. Age Ageing 2015; 44(3):422-7. https://doi.org/10.1093/ageing/ afu198.
- 35. You S, Wang X, Lindley RI, et al. Early cognitive impairment after intracerebral hemorrhage in the INTERACT1 Study. Cerebrovasc Dis (Basel, Switzerland) 2017;44(5-6):320-4. https://doi. org/10.1159/000481443.
- Ruiz-Sandoval JL, Chiquete E, Romero-Vargas S, Padilla-Martínez JJ, González-Cornejo S. Grading scale for prediction of outcome in primary intracerebral hemorrhages. *Stroke* 2007; 38(5):1641-4. https://doi.org/10.1161/STROKEAHA.106.478222.
- Arboix A, Comes E, García-Eroles L, et al. Site of bleeding and early outcome in primary intracerebral

hemorrhage. *Acta Neurol Scand* 2002;105(4):282-8. doi:10.1034/j.1600-0404.2002.10170.x.

- Sun G, Li X, Chen X, Zhang Y, Xu Z. Comparison of keyhole endoscopy and craniotomy for the treatment of patients with hypertensive cerebral hemorrhage. *Medicine (Baltimore)* 2019;98(2):e14123. doi:10.1097/MD.000000000014123.
- Liu X, Xue P, Liu L. advances in treatment of hypertensive cerebral hemorrhage with neuroendoscopic hematoma removal. *Chin J Neurol* 2016;04:429-31.
- 40. Ye Z, Ai X, Hu X, Fang F, You C. Comparison of neuroendoscopic surgery and craniotomy for supratentorial hypertensive intracerebral hemorrhage: A meta-analysis. *Medicine* (*Baltimore*) 2017;96(35):e7876. doi:10.1097/ MD.000000000007876.
- 41. Li Q, Yang CH, Xu JG, Li H, You C. Surgical treatment for large spontaneous basal ganglia hemorrhage: retrospective analysis of 253 cases. Br J Neurosurg 2013; 27(5):617–21. https://doi.org/10 .3109/02688697.2013.765938
- Chen CC, Lin HL, Cho DY. Endoscopic surgery for thalamic hemorrhage: a technical note. *Surg Neurol* 2007; 68(4):438-42. https://doi.org/10.1016/j. surneu.2006.11.054.
- Waran V, Vairavan N, Sia SF, Abdullah B. A new expandable cannula system for endoscopic evacuation of intraparenchymal hemorrhages. *J Neurosurg* 2009; 111(6): 1127-30. https://doi. org/10.3171/2009.4.JNS081506.
- 44. Sun GC, Chen XL, Hou YZ, *et al.* Image-guided endoscopic surgery for spontaneous supratentorial intracerebral hematoma. *JNeurosurg* 2017;127(3):537-42. https://doi.org/10.3171/2016.7.JNS16932.
- Hou Y, Ma L, Zhu R, Chen X. iPhone-assisted augmented reality localization of basal ganglia hypertensive hematoma. *World Neurosurg* 2016; 94: 480-92. https://doi.org/10.1016/j.wneu.2016.07.047.
- Rankin J. Cerebral vascular accidents in patients over the age of 60. II. Prognosis. *Scott Med J* 1957;2(5):200-15. doi:10.1177/003693305700200504.
- van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. *Stroke* 1988;19(5):604-7. doi:10.1161/01.str.19.5.604.
- Banks JL, Marotta CA. Outcomes validity and reliability of the modified Rankin scale: implications for stroke clinical trials: a literature review and synthesis. *Stroke* 2007;38(3):1091-6. doi:10.1161/01. STR.0000258355.23810.c6.
- 49. Nishihara T, Nagata K, Tanaka S, *et al.* Newly developed endoscopic instruments for the removal of intracerebral hematoma. *Neurocrit Care* 2005;2(1):67-74. doi:10.1385/NCC:2:1:067.
- Huang Y, Chen X, Huang J, Huang CZ, Neurosurgery DO, Hospital GN. A comparison study of endoscopic surgery versus craniotomy in hypertensive basal ganglia intracerebral hemorrhage. *Chin J Pract Nerv Dis* 2014;17(10):1-4. doi.org/10.3969/j.issn.1673-5110.2014.10.001.
- 51. Auer LM, Deinsberger W, Niederkorn K, et al. Endoscopic surgery versus medical treatment for

spontaneous intracerebral hematoma: a randomized study. *J Neurosurg* 1989; 70(4): 530-5. https://doi. org/10.3171/jns.1989.70.4.0530.

- Hankey GJ, Hon C. Surgery for primary intracerebral hemorrhage: is it safe and effective? A systematic review of case series and randomized trials. *Stroke* 1997; 28(11): 2126-32. https://doi.org/10.1161/01. str.28.11.2126.
- Morgenstern LB, Frankowski RF, Shedden P, Pasteur W, Grotta JC. Surgical treatment for intracerebral hemorrhage (STICH): a single-center, randomized clinical trial. *Neurology* 1998; 51(5):1359-63. https:// doi.org/10.1212/wnl.51.5.1359.

Supplemental

eTable 1: PICO table

Population	Intervention	Control	Outcome
Adult patients	Neuroendoscopy	Craniotomy	Postoperative mortality
(>18 years old)			Haematoma evacuation rate
with basal ganglia			Intraoperative blood loss
hemorrhage			Operative time
-			Postoperative Glasgow Coma Scale
			Postoperative Glasgow Outcome Scale
			Intracranial infection
			Rebleeding
			Reoperation
			Postoperative infection
			Postoperative complication
			Length of hospital stay
			Modified Rankin Score

eTable 2: Search Strategy

PUBMED DATABASE

Steps	Search String
1.	MeSH Terms: [Craniotomy]
2.	All Text: (Craniotomy)
3.	All Text: (open surgery)
4.	#1 OR #2 OR #3
5.	MeSH Terms: [neuroendoscopy]
6.	All Text: (neuroendoscopy)
7.	All Text: (endoscopy)
8.	All Text: (neuroendoscopic)
9.	All Text: (endoscopic)
10.	All Text: (minimal invasive)
11.	All Text (minimally invasive)
12.	#6 OR #7 OR #8 OR #9 OR #10 OR #11
13.	MeSH Terms: [basal ganglia hemorrhage]
14.	All Text: (basal ganglia hemorrhage)
15.	All Text: (basal ganglia bleed)
16.	All Text: (basal ganglia)
17.	All Text: (intracranial hemorrhage)
18.	All Text: (intracranial bleed)
19.	All Text: (intracerebral bleed)
20.	All Text: (intracerebral hemorrhage)
21.	All Text: (hypertensive cerebral hemorrhage)
22.	All Text: (cerebral hemorrhage)
23.	#13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21 OR #22
24.	#4 AND #12 and #23

Steps	Search String
1.	MeSH descriptor: [Basal Ganglia Hemorrhage] explode all trees
2.	(Basal Ganglia Hemorrhage)
3.	MeSH descriptor: [Basal Ganglia] explode all trees
4.	(Basal Ganglia)
5.	MeSH descriptor: [Intracranial Hemorrhage] explode all trees
6.	(intracranial haemorrhage)
7.	MeSH descriptor: [Cerebral Hemorrhage] explode all trees
8.	(intracerebral haemorrhage)
9.	(cerebral haemorrhage)
10.	("intracerebral haemorrhage-induced brain injury")
11.	#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10
12.	MeSH descriptor: [Endoscopy] exploded all trees
13.	(Endoscopy)
14.	("endoscopic")
15.	MeSH descriptor: [Neuroendoscopy] exploded all trees
16.	(neuroendoscopy)
17.	MeSH descriptor: [Minimally Invasive Surgical procedure] exploded all trees
18.	(Minimally Invasive Surgical procedure)
19.	#12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18
20.	MeSH descriptr: [Craniotomy] exploded all trees
21.	(Craniotomy)
22.	(open surgical approach)
23.	#20 OR #21 OR #22
24.	#11 AND #19 AND #23

OVID MEDLINE and OVID EMBASE DATABASE

Steps	Search String
1.	basal ganglia hemorrhage.mp. or Cerebral Hemorrhage/ or Basal Ganglia Hemorrhage/ or Basal Ganglia/
2.	basal ganglia hemorrhage*.m.p. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]
3.	Exp "Intracerebral Hemorrhage, Hypertensive/ or exp "Cerebral Hemorrhage/
4.	Intracerebral hemorrhage.mp. or exp* Cerebral Hemorrhage/
5.	1 or 2 or 3 or 4
6.	Endoscopy.mp. or exp "Endoscopy/
7.	Endoscopy*.mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept

- 7. Endoscopy*.mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]
- 8. Neuroendoscopy.mp. or exp *Neuroendoscopy/ or exp *Endoscopes/
- **9.** Neuroendoscopy*.mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]

- 10. Minimal invasive.mp. or exp "Minimally Invasive Surgical Procedures/
- 11. exp "Minimally Invasive Surgical Procedures/ or minimally invasive. mp.
- **12.** 6 or 7 or 8 or 9 or 10 or 11
- **13.** craniotomy*.mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]
- 14. Craniotomy.mp. or exp *Craniotomy/
- 15. Open surgery.mp.
- **16.** 13 or 14 or 15
- **17.** 5 and 12 and 16

eTable 3: PRISMA Checklist

Section/topic	#	Checklist item	Reported on page #	
TITLE	,			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1	
ABSTRACT				
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2,3	
INTRODUCTION	1			
Rationale	3	Describe the rationale for the review in the context of what is already known.	3	
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4	
METHODS				
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5	
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow- up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5,6	
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	7	
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	7	
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5,6	
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6,7	
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	6,7	
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	7	
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7,8	
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	7,8	

Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	8
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	8
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	9
Study characteristics	18	For each study, present characteristics for which data were ex- tracted (e.g., study size, PICOS, follow-up period) and provide the citations.	9
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	9,10
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a for- est plot.	10, 11
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10, 11
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	9,10
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	11
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	13, 14, 15, 16
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	17, 18
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	18
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	1